3 resultados para National regulation
em CentAUR: Central Archive University of Reading - UK
Resumo:
In recent years, there have been increasing concerns over the safety of the Chinese food supply. Although many of these have only raised concern internally within China, several major food safety issues have had international repercussions. In response, China has implemented new food safety laws and management systems to improve its national food safety control system and reduce public and international concerns. This paper has describes and discusses the components of the Chinese system using the five key elements of a national food control system identified by the World Health Organization (WHO) and the Food and Agriculture Organization (FAO) as essential for an effective system. The latest Chinese national food safety control has made significantly improvement on its regulation framework, however, more work need to be done on standards, law enforcement, and information exchange.
Resumo:
1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.