3 resultados para NUCLEAR POLYHEDROSIS-VIRUS
em CentAUR: Central Archive University of Reading - UK
Resumo:
A number of strategies are emerging for the high throughput (HTP) expression of recombinant proteins to enable structural and functional study. Here we describe a workable HTP strategy based on parallel protein expression in E. coli and insect cells. Using this system we provide comparative expression data for five proteins derived from the Autographa californica polyhedrosis virus genome that vary in amino acid composition and in molecular weight. Although the proteins are part of a set of factors known to be required for viral late gene expression, the precise function of three of the five, late expression factors (lefs) 6, 7 and 10, is unknown. Rapid expression and characterisation has allowed the determination of their ability to bind DNA and shown a cellular location consistent with their properties. Our data point to the utility of a parallel expression strategy to rapidly obtain workable protein expression levels from many open reading frames (ORFs).
Resumo:
The insect baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) enters many mammalian cell lines, prompting its application as a general eukaryotic gene delivery agent, but the basis of entry is poorly understood. For adherent mammalian cells we show that entry is favoured by low pH and increasing the available cell surface area through transient release from the substratum. Low pH also stimulated baculovirus entry into mammalian cells grown in suspension which, optimally, could reach 90% of the transduced population. The basic loop, residues 268-281, of the viral surface glycoprotein gp64 was required for entry and a tetra mutant with increasing basicity increased entry into a range of mammalian cells. The same mutant failed to plaque in Sf9 cells, instead showing individual cell entry and minimal cell to cell spread, consistent with an altered fusion phenotype. Viruses grown in different insect cells showed different mammalian cell entry efficiencies suggesting additional factors also govern entry.
Resumo:
In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G(2)/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G(2) regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G(2)/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the Go phase or asynchronously replicating cells. Our data suggested that IBV induces a G(2)/M phase arrest in infected cells to promote favorable conditions for viral replication.