3 resultados para NPK
em CentAUR: Central Archive University of Reading - UK
Resumo:
1. Declining populations of UK grassland flora and fauna have been attributed to intensification of agricultural management practices, including changes in cutting, fertilizer, grazing and drainage regimes. We aimed to develop field margin management practices that could reverse declines in intensively managed grassland biodiversity that would have application in the UK and Europe. Here we focus on one aspect of grassland biodiversity, the beetles. 2. In four intensively managed livestock farms in south-west England, 10-m wide field margins in existing grasslands were managed to create seven treatments of increasing sward architectural complexity. This was achieved through combinations of inorganic (NPK) fertilizer, cattle grazing, and timing and height of cutting. To examine the potential influence of complexity on faunal diversity, beetles were identified to species level from suction samples taken between 2003 and 2005, and their assemblage structure was related to margin management, floral assemblages and sward architecture. 3. Beetle abundance, and species richness and evenness were influenced by margin management treatment and its interaction with year. Correlations with sward architecture and the percentage cover of dominant forbs and grasses were also found. Functional groups of the beetles showed different responses to the management treatments. In particular, higher proportional abundances of seed/flower-feeding guilds were found in treatments not receiving NPK fertilizer. 4. The assemblage structure was shown to respond to margin management treatments, sward architecture and the percentage cover of dominant forbs and grasses. The most extensively managed treatments were characterized by distinct successional trajectories from the control treatment. 5. Synthesis and applications. This study provides management options suitable for use within agri-environment schemes intended to improve faunal diversity associated with intensively managed lowland grasslands. Field margins receiving either no management or a single July silage cut were shown to support greater abundances and species richness of beetles, although subtler modifications of conventional management may also be beneficial, for example the absence of NPK fertilizer while maintaining grazing and silage cutting systems.
Resumo:
Herbivore dynamics and community structure are influenced both by plant quality and the actions of natural enemies. A factorial experiment manipulating both higher and lower trophic levels was designed to explore the determinants of colony growth of the aphid Aphis jacobaeae, a specialist herbivore on ragwort Senecio jacobaea. Potential plant quality was manipulated by regular addition of NPK-fertiliser and predator pressure was reduced by interception traps; the experiment was carried out at two sites. The size and persistence of aphid colonies were measured. Fertiliser addition affected plant growth in only one site, but never had a measurable effect on aphid colony growth. In both habitats the action of insect predators dominated, imposing strong and negative effects on aphid colony performance. Ants were left unmanipulated in both sites and their performance on the aphid colonies did not significantly differ between sites or between treatments. Our results suggest that, at least for aphid herbivores on S. jacobaea, the action of generalist insect predators appears to be the dominant factor affecting colony performance and can under certain conditions even improve plant productivity.
Resumo:
Despite the importance of a thorough understanding of the effect of synthetic fertiliser on insect population dynamics, existing literature is conflicting and an area of intense debate. Here, a categorical random-effects meta-analysis and a vote count meta-analysis are employed to examine the effects of nitrogen(N), phosphorus (P), potassium (K) and NPK fertiliser on insect population dynamics. In agreement with the general consensus, insects were found to respond positively, overall, to fertilisers. Sucking insects showed a much stronger response to fertilisers than chewing insects. The environment in which a study is conducted can have a marked effect on insect responses to fertiliser, with natural environments showing the potential for buffering effects of nitrogen fertilisers in particular. As well as highlighting the potential shortfall in the amount of research investigating particularly the effects of potassium and phosphorus, this study provides an invaluable flag post in the ongoing research investigating fertiliser effects on ecosystems.