19 resultados para NONLINEAR-OPTICAL-PROPERTIES
em CentAUR: Central Archive University of Reading - UK
Resumo:
A guest/host material system in which the guest molecule is a functionalized, optically nonlinear, chromophore is described. A verification of the crosslinking process, an assessment of the nonlinear properties of the chromophore, using Solvatochromic methods, and an investigation of the electric field induced molecular orientation using second-harmonic generation are included.
Resumo:
Push-pull nonlinear optical (NLO) chromophores containing thiazole and benzothiazole acceptors were synthesized and characterized. Using these chromophores a series of second-order NLO polyimides were Successfully prepared from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA) and 3,3'4,4'-benzophenone tetracarboxylic dianhydride (BTDA) by a standard condensation polymerization technique. These polyimides exhibit high glass transition temperatures ranging from 160 to 188 degrees C. UV-vis spectrum of polyimide exhibited a slight blue shift and decreases in absorption due to birefringence. From the order parameters, it was found that chromophores were aligned effectively. Using in situ poling and temperature ramping technique, the optical temperatures for corona poling were obtained. It was found that the optimal temperatures of polyimides approach their glass transition temperatures. These polyimides demonstrate relatively large d(33) values range between 35.15 and 45.20 pm/V at 532 nm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Greenhouse cladding materials are a major component in the design of energy efficient greenhouses. The optical properties of cladding materials determine a major part of the overall performance of a greenhouse both in terms of the energy balance of the greenhouse and on crop behavior. Various film plastic greenhouse-cladding materials were measured under laboratory conditions using a spectroradiometer equipped with an integrating sphere. Films were measured over a range of angles of incidence and the effect of increasing distance between double films was also measured. PAR transmission remained nearly constant for angles of incidence increased up to 30 degrees but fell rapidly thereafter as the angles of incidence increased up to 90 degrees. Increasing distance between double films did not significantly affect PAR transmission in all films examined. These results are discussed in relation to the design criteria for an energy efficient greenhouse.
Resumo:
The chromium(II) antimony(III) sulphicle, [Cr((NH2CH2CH2)(3)N)]Sb4S7, was synthesised under solvothermal conditions from the reaction of Sb2S3. Cr and S dissolved in tris(2-aminoethyl)amine (tren) at 438 K. The products were characterised by single-crystal X-ray diffraction. elemental analysis, SQUID magnetometry and diffuse reflectance spectroscopy. The compound crystallises in the monoclinic space group P2(1)/n with a = 7.9756(7), b = 10.5191(9), c = 25.880(2) angstrom and beta = 90.864(5)degrees. Alternating SbS33- trigonal pyramids and Sb36 semi-cubes generate Sb4S72- chains which are directly bonded to Cr(tren pendant units. The effective magnetic moment of 4.94(6)mu(B) shows a negligible orbital contribution, in agreement with expectations for Cr(II):d(4) in a (5)A ground state. The measured band gap of 2.14(3) eV is consistent with a correlation between optical band gap and framework density that is established from analysis of a wide range of antimony sulphides. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study examines the effect of seasonally varying chlorophyll on the climate of the Arabian Sea and South Asian monsoon. The effect of such seasonality on the radiative properties of the upper ocean is often a missing process in coupled general circulation models and its large amplitude in the region makes it a pertinent choice for study to determine any impact on systematic biases in the mean and seasonality of the Arabian Sea. In this study we examine the effects of incorporating a seasonal cycle in chlorophyll due to phytoplankton blooms in the UK Met Office coupled atmosphere-ocean GCM HadCM3. This is achieved by performing experiments in which the optical properties of water in the Arabian Sea - a key signal of the semi-annual cycle of phytoplankton blooms in the region - are calculated from a chlorophyll climatology derived from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data. The SeaWiFS chlorophyll is prescribed in annual mean and seasonally-varying experiments. In response to the chlorophyll bloom in late spring, biases in mixed layer depth are reduced by up to 50% and the surface is warmed, leading to increases in monsoon rainfall during the onset period. However when the monsoons are fully established in boreal winter and summer and there are strong surface winds and a deep mixed layer, biases in the mixed layer depth are reduced but the surface undergoes cooling. The seasonality of the response of SST to chlorophyll is found to depend on the relative depth of the mixed layer to that of the anomalous penetration depth of solar fluxes. Thus the inclusion of the effects of chlorophyll on radiative properties of the upper ocean acts to reduce biases in mixed layer depth and increase seasonality in SST.
Resumo:
Sol-gel derived inorganic materials are of interest as hosts for non-linear optically active guest molecules and they offer particular advantages in the field of non-linear optics. Orientationally ordered glasses have been prepared using a sol-gel system based on tetramethoxysilane, methyltrimethoxysilane and a non-linear optical chromophore Disperse Red 1. The novel technique of photo-induced poling was used to generate enhanced levels of polar order. The level of enhancement is strongly dependent on the extent of gelation and an optimum preparation time of ∼100 h led to an enhancement factor of ∼5. Films prepared in this manner exhibited a high stability of the polar order.
Resumo:
A range of side chain liquid crystal copolymers have been prepared using mesogenic and non-mesogenic units. It is found that high levels of the non-mesogenic moieties may be introduced without completely disrupting the organization of the liquid crystal phase. Incorporation of this comonomer causes a marked reduction in the glass transition temperature (Tg), presumably as a result of enhanced backbone mobility and a corresponding lowering of the nematic transition temperature, thereby restricting the temperature range for stability of the liquid crystal phase. The effect of the interactions between the various components of these side-chain polymers on their electro-optic responses is described. Infrared (i.r.) dichroism measurements have been made to determine the order parameters of the liquid crystalline side-chain polymers. By identifying a certain band (CN stretching) in the i.r. absorption spectrum, the order parameter of the mesogenic groups can be obtained. The temperature and composition dependence of the observed order parameter are related to the liquid crystal phase transitions and to the electro-optic response. It is found that the introduction of the non-mesogenic units into the polymer chain lowers the threshold voltage of the electro-optic response over and above that due to the reduction in the order parameter. The dynamic electro-optic responses are dominated by the temperature-dependent viscosity and evidence is presented for relaxation processes involving the polymer backbone which are on a time scale greater than that for the mesogenic side-chain units.
Resumo:
Photoinduced poling (PIP) is a new technique which allows the room‐temperature preparation of guest/host polymer films exhibiting significant polar order for nonlinear optical applications. We report a comparison of this novel technique with the conventional electrode poling procedure performed at the glass transition temperature of the polymer using disperse red 1/poly(methylmethacrylate) films. In particular, in situ second harmonic generation measurements show that levels of polar order achieved using these two techniques are similar. In contrast, the stability of the polar order is reduced by up to 20 times in terms of the decay time constant in films prepared using PIP although the stability is very dependent upon the temperature at which the poling was performed.
Resumo:
The optical microstructures of thin sections of two liquid crystalline polymers are examined in the polarizing microscope. The polymers are random copolyesters based on hydroxybenzoic and hydroxynaphthoic acids (B-N), and hydroxybenzoic acid and ethylene terephthalate (B-ET). Sections cut from oriented samples, so as to include the extrusion direction, show microstructures in which there is no apparent preferred orientation of the axes describing the local optical anisotropy. The absence of preferred orientation in the microstructure, despite marked axial alignment of molecular chain segments as demonstrated by X-Ray diffraction, is interpreted in terms of the polymer having biaxial optical properties. The implication of optical biaxiality is that, although the mesophases are nematic, the orientation of the molecules is correlated about three (orthogonal) axes over distances greater than a micron. The structure is classified as a multiaxial nematic.
Resumo:
We present a summary of the principal physical and optical properties of aerosol particles using the FAAM BAE-146 instrumented aircraft during ADRIEX between 27 August and 6 September 2004, augmented by sunphotometer, lidar and satellite retrievals. Observations of anthropogenic aerosol, principally from industrial sources, were concentrated over the northern Adriatic Sea and over the Po Valley close to the aerosol sources. An additional flight was also carried out over the Black Sea to compare east and west European pollution. Measurements show the single-scattering albedo of dry aerosol particles to vary considerably between 0.89 and 0.97 at a wavelength of 0.55 μm, with a campaign mean within the polluted lower free troposphere of 0.92. Although aerosol concentrations varied significantly from day to day and during individual days, the shape of the aerosol size distribution was relatively consistent through the experiment, with no detectable change observed over land and over sea. There is evidence to suggest that the pollution aerosol within the marine boundary layer was younger than that in the elevated layer. Trends in the aerosol volume distribution show consistency with multiple-site AERONET radiometric observations. The aerosol optical depths derived from aircraft measurements show a consistent bias to lower values than both the AERONET and lidar ground-based radiometric observations, differences which can be explained by local variations in the aerosol column loading and by some aircraft instrumental artefacts. Retrievals of the aerosol optical depth and fine-mode (<0.5 μm radius) fraction contribution to the optical depth using MODIS data from the Terra and Aqua satellites show a reasonable level of agreement with the AERONET and aircraft measurements.
Resumo:
New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff) from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc) from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff >12 μm, or dvc >25 μm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration. Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation,which should be taken into account by numerical weather prediction and climate models.
Resumo:
We present a flexible framework to calculate the optical properties of atmospheric aerosols at a given relative humidity based on their composition and size distribution. The similarity of this framework to climate model parameterisations allows rapid and extensive sensitivity tests of the impact of uncertainties in data or of new measurements on climate relevant aerosol properties. The data collected by the FAAM BAe-146 aircraft during the EUCAARI-LONGREX and VOCALS-REx campaigns have been used in a closure study to analyse the agreement between calculated and measured aerosol optical properties for two very different aerosol types. The agreement achieved for the EUCAARI-LONGREX flights is within the measurement uncertainties for both scattering and absorption. However, there is poor agreement between the calculated and the measured scattering for the VOCALS-REx flights. The high concentration of sulphate, which is a scattering aerosol with no absorption in the visible spectrum, made the absorption measurements during VOCALS-REx unreliable, and thus no closure study was possible for the absorption. The calculated hygroscopic scattering growth factor overestimates the measured values during EUCAARI-LONGREX and VOCALS-REx by ∼30% and ∼20%, respectively. We have also tested the sensitivity of the calculated aerosol optical properties to the uncertainties in the refractive indices, the hygroscopic growth factors and the aerosol size distribution. The largest source of uncertainty in the calculated scattering is the aerosol size distribution (∼35%), followed by the assumed hygroscopic growth factor for organic aerosol (∼15%), while the predominant source of uncertainty in the calculated absorption is the refractive index of organic aerosol (28–60%), although we would expect the refractive index of black carbon to be important for aerosol with a higher black carbon fraction.