23 resultados para NO CO REACTION SYSTEM
em CentAUR: Central Archive University of Reading - UK
Resumo:
Time-resolved kinetic studies of the reaction of dideutero-silylene, SiD2, generated by laser flash photolysis of phenylsilane-d(3), have been carried out to obtain rate constants for its bimolecular reaction with C2H2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equation log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.05 +/- 0.05) + (3.43 +/- 0.36 kJ mol(-1))/RT ln 10. The rate constants were used to obtain a comprehensive set of isotope effects by comparison with earlier obtained rate constants for the reactions of SiH2 with C2H2 and C2D2. Additionally, pressure-dependent rate constants for the reaction of SiH2 with C2H2 in the presence of He (1-100 Tort) were obtained at 300, 399, and 613 K. Quantum chemical (ab initio) calculations of the SiC2H4 reaction system at the G3 level support the initial formation of silirene, which rapidly isomerizes to ethynylsilane as the major pathway. Reversible formation of vinylsilylene is also an important process. The calculations also indicate the involvement of several other intermediates, not previously suggested in the mechanism. RRKM calculations are in semiquantitative agreement with the pressure dependences and isotope effects suggested by the ab initio calculations, but residual discrepancies suggest the possible involvement of the minor reaction channel, SiH2 + C2H2 - SWPO + C2H4. The results are compared and contrasted with previous studies of this reaction system.
Resumo:
Time-resolved kinetic studies of the reaction of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with 2-butyne, CH3C CCH3. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 300-556 K. The second order rate constants obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.46 +/- 10.06) + (5.16 +/- 10.47) kJ mol(-1)/ RT ln 10 Calculations of the energy surface of the GeC4H8 reaction system were carried out employing the additivity principle, by combining previous quantum chemical calculations of related reaction systems. These support formation of 1,2-dimethylvinylgermylene (rather than 2,3-dimethylgermirene) as the end product. RRKM calculations of the pressure dependence of the reaction are in reasonable agreement with this finding. The reactions of GeH2 with C2H2 and with CH3CRCCH3 are compared and contrasted.
Resumo:
Time-resolved kinetic studies of the reactions of silylene, SiH2, and dideutero-silylene, SiD2, generated by laser. ash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH3C CCH3. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(-1)/RTln10 log(k(D)(infinity)/cm(3) molecule(-1) s(-1)) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTln10 Additionally, pressure-dependent rate coefficients for the reaction of SiH2 with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC4H8 reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH2C(CH3)=C(CH3)-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH3CH=C(CH3)SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H - D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed mechanism involving several intermediate species, which is consistent with the G3 energy surface, is proposed to account for this.
Resumo:
Neuroinflammation plays an integral role in the progression of neurodegeneration. In this study we investigated the anti-inflammatory effects of different classes of flavonoids (flavanones, flavanols and anthocyanidins) in primary mixed glial cells. We found that the flavanones naringenin and hesperetin and the flavols (+)-catechin and (-)-epicatechin, but not the anthocyanidins cyanidin and pelargonidin, attenuated LPS/IFN-gamma-induced TNF-alpha production in glial cells. Naringenin also inhibited LPS/IFN-gamma-induced iNOS expression and nitric oxide production in glial cells, thus showing the strongest antiinflammatory activity among all flavonoids tested. Moreover, naringenin protected against inflammatory-induced neuronal death in a primary neuronal-glial co-culture system. Naringenin also inhibited LPS/IFN-gamma-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and downstream signal transducer and activator of transcription-1 (STAT-1) in LPS/IFN-gamma stimulated primary mixed glial cells. Taken together, our results suggest that naringenin may produce an anti-inflammatory effect in LPS/IFN-gamma stimulated glial cells that may be due to its interaction with p38 signalling cascades and the STAT-I trascription factor. (C) 2009 Elseiver Inc. All rights reserved.
Resumo:
Although the potential to adapt to warmer climate is constrained by genetic trade-offs, our understanding of how selection and mutation shape genetic (co)variances in thermal reaction norms is poor. Using 71 isofemale lines of the fly Sepsis punctum, originating from northern, central, and southern European climates, we tested for divergence in juvenile development rate across latitude at five experimental temperatures. To investigate effects of evolutionary history in different climates on standing genetic variation in reaction norms, we further compared genetic (co)variances between regions. Flies were reared on either high or low food resources to explore the role of energy acquisition in determining genetic trade-offs between different temperatures. Although the latter had only weak effects on the strength and sign of genetic correlations, genetic architecture differed significantly between climatic regions, implying that evolution of reaction norms proceeds via different trajectories at high latitude versus low latitude in this system. Accordingly, regional genetic architecture was correlated to region-specific differentiation. Moreover, hot development temperatures were associated with low genetic variance and stronger genetic correlations compared to cooler temperatures. We discuss the evolutionary potential of thermal reaction norms in light of their underlying genetic architectures, evolutionary histories, and the materialization of trade-offs in natural environments.
Resumo:
This series of experiments investigated the role of a prefrontal cortical-dorsal striatal circuit in attention, using a continuous performance task of sustained and spatially divided visual attention. A unilateral excitotoxic lesion of the medial prefrontal cortex and a contralateral lesion of the medial caudate-putamen were used to "disconnect" the circuit. Control groups of rats with unilateral lesions of either structure were tested in the same task. Behavioral controls included testing the effects of the disconnection lesion on Pavlovian discriminated approach behavior. The disconnection lesion produced a significant reduction in the accuracy of performance in the attentional task but did not impair Pavlovian approach behavior or affect locomotor or motivational variables, providing evidence for the involvement of this medial prefrontal corticostriatal system in aspects of visual attentional function.
The effects of a complexation reaction on travelling wave-fronts in a quadratic autocatalytic system
CO Oxidation and the CO/NO Reaction on Pd(110) Studied Using "Fast" XPS and a Molecular Beam Reactor
Resumo:
Conventional seemingly unrelated estimation of the almost ideal demand system is shown to lead to small sample bias and distortions in the size of a Wald test for symmetry and homogeneity when the data are co-integrated. A fully modified estimator is developed in an attempt to remedy these problems. It is shown that this estimator reduces the small sample bias but fails to eliminate the size distortion.. Bootstrapping is shown to be ineffective as a method of removing small sample bias in both the conventional and fully modified estimators. Bootstrapping is effective, however, as a method of removing. size distortion and performs equally well in this respect with both estimators.
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.
Resumo:
Synthesis, testing and characterisation of bimetallic gold, Au-M on ceria as catalysts were carried out for low temperature water-gas shift reaction (WGS). Amongst the entire screened catalysts 3 wt% (AU-Pt)/CeO2 displayed the best WGS activity than the monometallic promotors, giving the light-off curve at the lowest temperature in the range 100-300 degrees C. (Au-Pd)/CeO2 also achieved the same activity but at a higher temperature. It was also found that WGS activity was strongly correlated with the surface reducibility which in turn depended on the modified local electronic band structure of promoted ceria. These results clearly suggest that the key role of bimetallic promoter may involve in facilitating the creation of defective reduced surface by exerting its local electronic effect on ceria to form the surface germinal -OH groups in water which act as active sites for enhanced WGS activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.