24 resultados para NH2 nucleophiles
em CentAUR: Central Archive University of Reading - UK
Resumo:
The complex [(C(NH2)3)3ZrOH(CO3)3·H2O]2 (A) has been shown by means of a single crystal X-ray diffraction study to contain [C(NH2)3]+ cations and dimeric anions of formulation [(ZrOH(CO3)3)2]6−. The anion is centrosymmetric with each metal being bonded to two bridging OH groups and three chelating CO2−3 ions. The Zr atoms are thus eight coordinate with a dodecahedral environments. The ZrO distances formed by the bridgng OH groups are shorter than those formed through zirconiu carbonate interactions. The non-bonded Zr…Zr distance is 3.47(2) Å. An infrared spectroscopic investigation of A provides data which support the findings of the crystallographic study. Likewise the complex Na6(ZrOH(CO2O4)3)2·7H2O (B) contains the anion [(ZrOH(C2O4)3)2]6−. This anion is structurally related to the anion in A as each Zr atom has an eight-coordinate dodecahedral environment being bonded to two bridging OH groups and three chelating oxalate ligands, but has no imposed crysallographic symmetry. The Zr…Zr non-bonded distance is 3.50(1) Å. The OZrO bridge angles are 69.7(4)° and A and 67.4(3)° in B.
Resumo:
The microwave spectra of 2-aminopyridine-NH2, -ND2, and of both of the two possible -NHD molecules have been observed and assigned in the 0+ vibrational state of the amino group inversion vibration; the assignment for three of the molecules in the 0− state is also made. From intensity measurements the 0+-0− splitting is estimated to be 135 ± 25 cm−1 for the -NH2 molecule and 95 ± 30 cm−1 for the -ND2 molecule. The rotational constants are interpreted in terms of a structure in which the amino group is bent about 32° out of the molecular plane, the c coordinates of the two amino H atoms being 0.21 and 0.28 Å. Stark effect measurements give a dipole moment of about 0.9 D which is almost entirely in the b axis, and which changes quite significantly between the 0+ and 0− states.
Resumo:
The different types of surface intersection which may occur in linear configurations of triatomic molecules are reviewed, particularly with regard to the way in which the degeneracy is split as the molecule bends. The Renner-Teller effect in states of symmetry Π, Δ, Φ, etc., and intersections between Σ and Π, Σ and Δ, and Π and Δ states are discussed. A general method of modelling such intersecting potential surfaces is proposed, as a development of the model previously used by Murrell and Carter and co-workers for single-valued surfaces. Some of the lower energy surfaces of H2O, NH2, O3, C3, and HNO are discussed as examples.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
Oxidized low-density lipoproteins (LDL) play a central role in atherogenesis and induce expression of the antioxidant stress protein heme oxygenase 1 (HO-1). In the present study we investigated induction of HO-1 and adaptive increases in reduced glutathione (GSH) in human aortic smooth muscle cells (SMC) in response to moderately oxidized LDL (moxLDL, 100 mu g protein/ml, 24 h), a species containing high levels of lipid hydroperoxides. Expression and activity of HO-1 and GSH levels were elevated to a greater extent by moxLDL than highly oxidized LDL but unaffected by native or acetylated LDL. Inhibitors of protein kinase C (PKC) or mitogen-activated protein kinases (MAPK) p38(MAPK) and MEK or c-jun-NH2-terminal kinase (JNK) significantly attenuated induction of HO-1. Phosphorylation of p38(MAPK), extracellular signal-regulated kinase (ERK1/2), or JNK and nuclear translocation of the transcription factor Nrf2 were enhanced following acute exposure of SMC to rnoxLDL (100 mu g proteiri/ml, 1-2 h). Pretreatment of SMC with the antioxidant vitamin C (100 mu M, 24 h) attenuated the induction of HO-1 by moxLDL. Native and oxidized LDL did not alter basal levels of intracellular ATP, mitochondrial dehydrogenase activity, or expression of the lectin-like oxidized LDL receptor (LOX-1) in SMC. These findings demonstrate for the first time that activation of PKC, p38(MAPK), JNK, ERK1/2, and Nrf2 by oxidized LDL in human SMC leads to HO-1 induction, constituting an adaptive response against oxidative injury that can be ameliorated by vitamin C. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Expression of biologically active molecules as fusion proteins with antibody Fc can substantially extend the plasma half-life of the active agent but may also influence function. We have previously generated a number of fusion proteins comprising a complement regulator coupled to Fc and shown that the hybrid molecule has a long plasma half-life and retains biological activity. However, several of the fusion proteins generated had substantially reduced biological activity when compared with the native regulator or regulator released from the Fc following papain cleavage. We have taken advantage of this finding to engineer a prodrug with low complement regulatory activity that is cleaved at sites of inflammation to release active regulator. Two model prodrugs, comprising, respectively, the four short consensus repeats of human decay accelerating factor (CD55) linked to IgG4 Fc and the three NH2-terminal short consensus repeats of human decay accelerating factor linked to IgG2 Fc have been developed. In each, specific cleavage sites for matrix metalloproteinases and/or aggrecanases have been incorporated between the complement regulator and the Fc. These prodrugs have markedly decreased complement inhibitory activity when compared with the parent regulator in vitro. Exposure of the prodrugs to the relevant enzymes, either purified, or in supernatants of cytokine-stimulated chondrocytes or in synovial fluid, efficiently cleaved the prodrug, releasing active regulator. Such agents, having negligible systemic effects but active at sites of inflammation, represent a paradigm for the next generation of anti-C therapeutics.
Resumo:
We report four human tachykinins, endokinins A, B, C, and D (EKA-D), encoded from a single tachykinin precursor 4 gene that generates four mRNAs (alpha, beta, gamma, and delta). Tachykinin 4 gene expression was detected primarily in adrenal gland and in the placenta, where, like neurokinin B, significant amounts of EKB-like immunoreactivity were detected. EKA/B 10-mers displayed equivalent affinity for the three tachykinin receptors as substance P (SP), whereas a 32-mer N-terminal extended form of EKB was significantly more potent than EKA/B or SP. EKC/D, which possess a previously uncharacterized tachykinin motif, FQGLL-NH2, displayed low potency, EKA/B displayed identical hemodynamic effects to SP in rats, causing short-lived falls in mean arterial blood pressure associated with tachycardia, mesenteric vasoconstriction, and marked hindquarter vasodilatation. Thus, EKA/B could be the endocrine/paracrine agonists at peripheral SP receptors and there may be as yet an unidentified receptor(s) for EKC/D.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with NO. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas at five temperatures in the range 299-592 K. The second-order rate constants at 10 Torr fitted the Arrhenius equation log(k/cm(3) molecule(-1) s(-1)) = (- 11.66 +/- 0.01) + (6.20 +/- 0.10 kJ mol(-1))IRT In 10 The rate constants showed a variation with pressure of a factor of ca. 2 over the available range, almost independent of temperature. The data could not be fitted by RRKM calculations to a simple third body assisted association reaction alone. However, a mechanistic model with an additional (pressure independent) side channel gave a reasonable fit to the data. Ab initio calculations at the G3 level supported a mechanism in which the initial adduct, bent H2SiNO, can ring close to form cyclo-H2SiNO, which is partially collisionally stabilized. In addition, bent H2SiNO can undergo a low barrier isomerization reaction leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are NH2 + SiO. The rate controlling barrier for this latter pathway is only 16 kJ mol(-1) below the energy of SiH2 + NO. This is consistent with the kinetic findings. A particular outcome of this work is that, despite the pressure dependence and the effects of the secondary barrier (in the side reaction), the initial encounter of SiH2 with NO occurs at the collision rate. Thus, silylene can be as reactive with odd electron molecules as with many even electron species. Some comparisons are drawn with the reactions of CH2 + NO and SiCl2 + NO.
Resumo:
The title compound, poly[[mu-cyanoureato-tri-mu-hydroxidodicopper(II)] dihydrate], {[Cu-2(C2H2N3O)(OH)(3)]center dot 2H(2)O}(n), is a new layered copper(II) hydroxide salt (LHS) with cyanoureate ions and water molecules in the interlayer space. The three distinct copper(II) ions have distorted octahedral geometry: one Cu (symmetry (1) over bar) is coordinated to six hydroxide groups (4OH + 2OH), whilst the other two Cu atoms (symmetries (1) over bar and 1) are coordinated to four hydroxides and two N atoms from nitrile groups of the cyanoureate ions (4OH + 2N). The structure is held together by hydrogen-bonding interactions between the terminal-NH2 groups and the central cyanamide N atoms of organic anions associated with neighbouring layers.
Resumo:
Cyclocondensations of aromatic diamines with 1,1'-bis(2,4-dinitrophenyl)-4,4'-bipyridinium salts afford doubly or quadruply charged, macrocyclic, N,N'-diarylbipyridinium cations. These are tolerant of a wide range of acids, bases, and nucleophiles, although they appear to undergo reversible, one-electron reduction by tertiary amines. Single-crystal X-ray analysis demonstrates the presence of a macrocycle conformation in which the 4,4'-bipyridinium and 4,4'-biphenylenedisulfonyl residues are suitably spaced and aligned for complexation with pi-donor arenes, and NMR studies in solution indeed confirm binding to 1,5-bis[hydroxy(ethoxy)ethoxy]naphthalene.
Resumo:
Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7](2-), but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)(4)NH3)[Sb4S7] (1) contains [Sb4S7](2-) double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)(2)[Sb4S7] (T= CH3(CH2)(2)NH2 (2), (CH3)(2)CHNH2 (3), CH3(CH2)(3)NH2 (4) and CH3(CH2)(4)NH2 (5)) adopt a more complex structure in which [Sb3S8](7-) units are linked by Sb-3(3-) pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7](2-) anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
Objective: Peroxynitrite (ONOO-) is formed in the inflamed and degenerating human joint. Peroxynitrite-modified collagen-II (PMC-II) was recently discovered in the serum of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Therefore we investigated the cellular effects of PMC-II on human mesenchymal progenitor cells (MPCs) as a model of cartilage and cartilage repair cells in the inflamed and degenerating joint. Design: MPCs were isolated from the trabecular bone of patients undergoing reconstructive surgery and were differentiated into a chondrogenic lineage. Cells were exposed to PMC-II and levels of the proinflammatory mediators nitric oxide (NO) and prostaglandin E-2 (PGE(2)) measured. Levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated mitogen activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kappa B) activation were measured by enzyme linked immunosorbent assay (ELISA) together with specific MAPK and NF-kappa B inhibitors. Results: PMC-II induced NO and PGE(2) synthesis through upregulation of iNOS and COX-2 proteins. PMC-II also lead to the phosphorylation of MAPKs, extracellularly regulated kinase 1/2 (ERK1/2) and p38 [but not c-Jun NH2-terminal kinase (JNK1/2)] and the activation of proinflammatory transcription factor NF-kappa B. Inhibitors of p38, ERK1/2 and NF-kappa B prevented PMC-II induced NO and PGE(2) synthesis, NOS and COX-2 protein expression and NF-kappa B activation. Conclusion: iNOS, COX-2, NF-KB and MAPK are known to be activated in the joints of patients with OA and RA. PMC-II induced iNOS and COX-2 synthesis through p38, ERK1/2 and NF-KB dependent pathways suggesting a previously unidentified pathway for the synthesis of the proinflammatory mediators, NO and PGE(2), further suggesting that inhibitors of these pathways may be therapeutic in the inflamed and degenerating human joint. (c) 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
The self-assembly of a fragment of the amyloid beta peptide that has been shown to be critical in amyloid fibrillization has been studied in aqueous solution. There are conflicting reports in the literature on the fibrillization of A beta (16-20), i.e., KLVFF, and our results shed light on this. In dilute solution, self-assembly of NH2-KLVFF-COOH is strongly influenced by aromatic interactions between phenylalanine units, as revealed by UV spectroscopy and circular dichroism. Fourier transform infrared (FTIR) spectroscopy reveals beta-sheet features in spectra taken for more concentrated solutions and also dried films. X-ray diffraction and cryo-transmission electron microscopy (cryo-TEM) provide further support for beta-sheet amyloid fibril formation. A comparison of cryo-TEM images with those from conventional dried and negatively stained TEM specimens highlights the pronounced effects of sample preparation on the morphology. A comparison of FTIR data for samples in solution and dried samples also highlights the strong effect of drying on the self-assembled structure. In more concentrated phosphate-buffered saline (PBS) solution, gelation of NH2-KLVFF-COOH is observed. This is believed to be caused by screening of the electrostatic charge on the peptide, which enables beta sheets to aggregate into a fibrillar gel network. The rheology of the hydrogel is probed, and the structure is investigated by light scattering and small-angle X-ray scattering.