20 resultados para NETWORK ANALYSIS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Social Networking Sites have recently become a mainstream communications technology for many people around the world. Major IT vendors are releasing social software designed for use in a business/commercial context. These Enterprise 2.0 technologies have impressive collaboration and information sharing functionality, but so far they do not have any organizational network analysis (ONA) features that reveal any patterns of connectivity within business units. This paper shows the impact of organizational network analysis techniques and social networks on organizational performance, we also give an overview on current enterprise social software, and most importantly, we highlight how Enterprise 2.0 can help automate an organizational network analysis.
Resumo:
The article features a conversation between Rob Cross and Martin Kilduff about organizational network analysis in research and practice. It demonstrates the value of using social network perspectives in HRM. Drawing on the discussion about managing personal networks; managing the networks of others; the impact of social networking sites on perceptions of relationships; and ethical issues in organizational network analysis, we propose specific suggestions to bring social network perspectives closer to HRM researchers and practitioners and rebalance our attention to people and to their relationships.
Resumo:
This paper describes an application of Social Network Analysis methods for identification of knowledge demands in public organisations. Affiliation networks established in a postgraduate programme were analysed. The course was executed in a distance education mode and its students worked on public agencies. Relations established among course participants were mediated through a virtual learning environment using Moodle. Data available in Moodle may be extracted using knowledge discovery in databases techniques. Potential degrees of closeness existing among different organisations and among researched subjects were assessed. This suggests how organisations could cooperate for knowledge management and also how to identify their common interests. The study points out that closeness among organisations and research topics may be assessed through affiliation networks. This opens up opportunities for applying knowledge management between organisations and creating communities of practice. Concepts of knowledge management and social network analysis provide the theoretical and methodological basis.
Resumo:
Background Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.
Resumo:
This article reports an experiment in world city network analysis focusing on city-dyads. Results are derived from an unusual principal components analysis of 27,966 city-dyads across 5 advanced producer service sectors. A 2-component solution is found that identifies different forms of globalization: extensive and intensive. The latter is characterized by very high component scores and describes the more important city-dyads focused upon London-New York (NYLON). The extensive globalization component heavily features London and New York but with each linked to less important cities. U.S. cities score relatively high on the intensive globalization component and we use this finding to explain the low connectivities of U.S. cities in previous studies of the world city network. The two components are tentatively interpreted in world-systems terms: intensive globalization is the process of core-making through city-dyads; extensive globalization is the process of linking core with non-core through city-dyads.
Resumo:
Crises cause social disturbances within their host organisation and the patterns of interpersonal ties that emerge are an important determinant of crisis management efficiency. In this article, social network analysis is used within a construction project context, to demonstrate that efficient crisis management depends upon the design and maintenance of an appropriate social fabric. However, crises have defence mechanisms that make management difficult by inducing forces that encourage people to pursue inappropriate social ties. Purposeful social intervention is therefore an essential part of the crisis management process to confront and avoid disorganisation.
Resumo:
The UK industry has been criticised for being slow to adopt construction process innovations. Research shows that the idiosyncrasies of participants, their roles in the system and the contextual differences between sections of the industry make this a highly complex problem. There is considerable evidence that informal social networks play a key role in diffusion of innovations. The aim is to identify informal communication networks of project participants and the role these play in the diffusion of construction innovations. The characteristics of this network will be analysed in order to understand how they can be used to accelerate innovation diffusion within and between projects. Social Network Analysis is used to determine informal communication routes. Control and experiment case study projects are used within two different organizations. This allows informal communication routes concerning innovations to be mapped, whilst testing if the informal routes can facilitate diffusion. Analysis will focus upon understanding the combination of informal strong and weak ties, and how these impede or facilitate the diffusion of the innovation. Initial work suggests the presence of an informal communication network. Actors within this informal network, and the organization's management are unaware of its' existence and their informal roles within it. Thus, the network remains an untapped medium regarding innovation diffusion. It is proposed that successful innovation diffusion is dependent upon understanding informal strong and weak ties, at project, organization and industry level.
Resumo:
The genetic analysis workshop 15 (GAW15) problem 1 contained baseline expression levels of 8793 genes in immortalised B cells from 194 individuals in 14 Centre d’Etude du Polymorphisme Humane (CEPH) Utah pedigrees. Previous analysis of the data showed linkage and association and evidence of substantial individual variations. In particular, correlation was examined on expression levels of 31 genes and 25 target genes corresponding to two master regulatory regions. In this analysis, we apply Bayesian network analysis to gain further insight into these findings. We identify strong dependences and therefore provide additional insight into the underlying relationships between the genes involved. More generally, the approach is expected to be applicable for integrated analysis of genes on biological pathways.
Resumo:
We explore the contribution of socio-technical networks approaches to construction management research. These approaches are distinctive for their analysis of actors and objects as mutually constituted within socio-technical networks. They raise questions about the ways in which the content, meaning and use of technology is negotiated in practice, how particular technical configurations are elaborated in response to specific problems and why certain paths or solutions are adopted rather than others. We illustrate this general approach with three case studies: a historical study of the development of reinforced concrete in France, the UK and the US, the recent introduction of 3D-CAD software into four firms and an analysis of the uptake of environmental assessment technologies in the UK since 1990. In each we draw out the ways in which various technologies shaped and were shaped by different socio-technical networks. We conclude with a reflection on the contributions of socio-technical network analysis for more general issues including the study of innovation and analyses of context and power.
Resumo:
Endogenous formation of N-nitroso compounds (NOCs), which are known animal carcinogens, could contribute to human carcinogenesis but definitive evidence is still lacking. To investigate the relevance of NOCs in human colorectal cancer (CRC) development, we analyzed whole genome gene expression modifications in human colon biopsies in relation to fecal NOC exposure. We had a particular interest in patients suffering from intestinal inflammation as this may stimulate endogenous NOC formation, and consequently predispose to CRC risk. Inflammatory bowel disease (IBD) patients diagnosed with ulcerative colitis and irritable bowel syndrome patients without inflammation, serving as controls, were therefore recruited. Fecal NOC were demonstrated in the majority of subjects. By associating gene expression levels of all subjects to fecal NOC levels, we identified a NOC exposure-associated transcriptomic response that suggests that physiological NOC concentrations may potentially induce genotoxic responses and chromatin modifications in human colon tissue, both of which are linked to carcinogenicity. In a network analysis, chromatin modifications were linked to 11 significantly modulated histone genes, pointing towards a possible epigenetic mechanism that may be relevant in comprehending NOC-induced carcinogenesis. In addition, pro-inflammatory transcriptomic modifications were identified in visually non-inflamed regions of the IBD colon. However, fecal NOC levels were slightly but not significantly increased in IBD patients, suggesting that inflammation did not strongly stimulate NOC formation. We conclude that NOC exposure is associated with gene expression modifications in the human colon that may suggest a potential role of these compounds in CRC development.
Resumo:
Investments in direct real estate are inherently difficult to segment compared to other asset classes due to the complex and heterogeneous nature of the asset. The most common segmentation in real estate investment analysis relies on property sector and geographical region. In this paper, we compare the predictive power of existing industry classifications with a new type of segmentation using cluster analysis on a number of relevant property attributes including the equivalent yield and size of the property as well as information on lease terms, number of tenants and tenant concentration. The new segments are shown to be distinct and relatively stable over time. In a second stage of the analysis, we test whether the newly generated segments are able to better predict the resulting financial performance of the assets than the old dichotomous segments. Applying both discriminant and neural network analysis we find mixed evidence for this hypothesis. Overall, we conclude from our analysis that each of the two approaches to segmenting the market has its strengths and weaknesses so that both might be applied gainfully in real estate investment analysis and fund management.
Resumo:
The themes of awareness and influence within the innovation diffusion process are addressed. The innovation diffusion process is typically represented as stages, yet awareness and influence are somewhat under-represented in the literature. Awareness and influence are situated within the contextual setting of individual actors but also within the broader institutional forces. Understanding how actors become aware of an innovation and then how their opinion is influenced is important for creating a more innovation-active UK construction sector. Social network analysis is proposed as one technique for mapping how awareness and influence occur and what they look like as a network. Empirical data are gathered using two modes of enquiry. This is done through a pilot study consisting of chartered professionals and then through a case study organization as it attempted to diffuse an innovation. The analysis demonstrates significant variations across actors’ awareness and influence networks. It is argued that social network analysis can complement other research methods in order to present a richer picture of how actors become aware of innovations and where they draw their influences regarding adopting innovations. In summarizing the findings, a framework for understanding awareness and influence associated with innovation within the UK construction sector is presented. Finally, with the UK construction sector continually being encouraged to be innovative, understanding and managing an actor’s awareness and influence network will be beneficial. The overarching conclusion thus describes the need not only to build research capacity in this area but also to push the boundaries related to the research methods employed.
Resumo:
Monte Carlo algorithms often aim to draw from a distribution π by simulating a Markov chain with transition kernel P such that π is invariant under P. However, there are many situations for which it is impractical or impossible to draw from the transition kernel P. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace P by an approximation Pˆ. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how ’close’ the chain given by the transition kernel Pˆ is to the chain given by P . We apply these results to several examples from spatial statistics and network analysis.
Resumo:
The United Kingdom is committed to a raft of requirements to create a low-carbon economy. Buildings consume approximately 40% of UK energy demand. Any improvement on the energy performance of buildings therefore can significantly contribute to the delivery of a low-carbon economy. The challenge for the construction sector and its clients is how to meet the policy requirements to deliver low and zero carbon (LZC) buildings, which spans broader than the individual building level, to requirements at the local and regional levels, and wider sustainability pressures. Further, the construction sector is reporting skills shortages coupled with the need for ‘new skills’ for the delivery of LZC buildings. The aim of this paper is to identify, and better understand, the skills required by the construction sector and its clients for the delivery of LZC buildings within a region. The theoretical framing for this research is regional innovation system (RIS) using a socio-technical network analysis (STNA) methodology. A case study of a local authority region is presented. Data is drawn from a review of relevant local authority documentation, observations and semi-structured interviews from one (project 1) of five school retrofit projects within the region. The initial findings highlight the complexity surrounding the form and operation of the LZC network for project 1. The skills required by the construction sector and its clients are connected to different actor roles surrounding the delivery of the project. The key actors involved and their required skills are: project management and energy management skills required by local authority; project management skills (in particular project planning), communication and research skills required by school end-users; and a ‘technical skill’ relating to knowledge of a particular energy efficient measure (EEM) and use of equipment to implement the EEM is required by the EEM contractors.
Resumo:
Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.