6 resultados para NEEM

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initial applications of 10(4) spores g(-1) of Pasteuria penetrans, and dried neem cake and leaves at 3 and 2% w:w, respectively, were applied to soil in pots. Juveniles of Meloidogyne javanica were added immediately to the pots (500, 5,000 or 10,000) before planting 6-week-old tomato seedlings. The tomatoes were sampled after 64 days; subsequently a second crop was grown for 59 days and a third crop for 67 days without further applications of P. penetrans and neem. There was significantly less root-galling in the P. penetrans combined with neem cake treatment at the end of the third crop and this treatment also had the greatest effect on the growth of the tomato plants. At the end of the third crop, 30% of the females were infected with P. penetrans in those treatments where spores had been applied at the start of the experiment. The effects of neem leaves and neem cake on the nematode population did not persist through the crop sequences but the potential for combining the amendments with a biological control agent such as P. penetrans is worthy of further evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Second stage juveniles of Meloidogyne javanica were exposed to aqueous extracts of neem crude formulations (leaves and cake) at 10%, 5%, and 2.5% w/v and a refined product, Aza at 0.1% w/v. The 10% extracts of neem leaf and cake caused 83% and 85% immobility and 35% and 28% mortality, respectively. Aza caused neither immobility or mortality of juveniles. When egg masses were placed in extracts of these formulations, hatching did not occur at all the concentrations (10%, 5%, 2.5% and 1.25% w/v) of the crude formulations. When the treated egg masses were returned to water, the eggs resumed hatching. Aza did not affect the nematode hatching. In glasshouse experiments, soil application of neem formulations significantly reduced the invasion of tomato roots by root-knot nematodes but once the nematodes managed to invade them, no effect detected on their development. Soil applications of Aza at 0.05% and 0.1% w/v significantly reduced the invasion and delayed development of nematodes within tomato roots whereas 0.025% did not. There were significantly fewer egg masses on tomato roots exposed to single egg mass in neem amended soil as compared to control. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neem leaves, neem cake (a by-product left after the extraction of oil from neem seed) and a commercially refined product aza (azadirachtin) extracted from seed were evaluated. Aqueous extracts of crude neem formulations used as a seedling dip treatment significantly reduced the number of females and egg masses in roots whereas the refined one did not. A split-root technique was used to demonstrate the translocation of active compounds within a plant and their subsequent effect on the development of nematodes. When applied to the root portion all formulations significantly reduced the number of egg masses and eggs per egg mass. Whereas on the untreated root portion, neem cake at 3% w/w and aza at 0.1% w/w significantly reduced the number of egg masses as compared with neem leaves at 3% w/w, aza at 0.05% and control. All the neern formulations significantly reduced the number of eggs per egg mass on' the untreated root portion. The effect of neem leaves and cake on the development of root-knot nematodes was tested at 2, 4, 6, 8, and 16 weeks after their application to soil. Even after 16 weeks all the treatments significantly reduced the galling index and number of egg masses but their effectiveness declined over time. After storing neem leaves, cake and aza for 8 months under ambient conditions the efficacy of neem leaves and aza, against root-knot nematodes, remained stable whereas that of cake declined. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of neem formulations, crude and refined, were tested. The crude form was neem leaves and neem cakes (a by-product left after the extraction of oil from neem seed) and one of the neem-refined products was "aza". The protective and curative soil application of these formulations significantly reduced the number of egg masses and eggs per egg mass on tomato roots. Protective application of neem crude formulations (leaves and cake) did not reduce the invasion of juveniles whereas aza at 0.1% w/w did. Curative application of neem formulations significantly reduced the number of egg masses and eggs per egg mass as compared with the control. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air-dried and 3 mm pore size sieved soil was amended with neem crude formulations (leaves and cake) @ 3% w/w and a refined product, aza @ 0.05 and 0.1 w/w. Three days after treatment, 500 eggs of M. javanica held in 2 ml water were added in each dish. In another experiment, soil was amended with neem crude formulations @ 10. 5, 2.5 and 1% w/w and refined formulation aza @ 0.025, 0.05, 0.1 and 0.5% w/w. Three days after amendment 1000 plus minus 21 freshly hatched J2 held in 3 ml water were added to the amended soil. Untreated soil was kept as control. Comparison of treatments means showed that all the neem formulations caused significant reduction of hatching. Neem crude formulations were more effective in reducing hatching as compared to commercial product aza. Among the crude formulations, neem leaves were most effective in reducing hatching. In other experiment all the doses of neem crude and refined formulations differed significantly with control in reducing the mobility of juveniles. It was observed that by increasing the dose of the formulations the mobility was reduced accordingly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The promotion of technologies seen to be aiding in the attainment of agricultural sustainability has been Popular amongst Northern-based development donors for many years. One of these, botanical insecticides (e.g., those based on neem, Pyrethrum and tobacco) have been a particular favorite as they are equated with being 'natural' and hence less damaging to human health and the environment. This paper describes the outcome of interactions between one non-government organisation (NGO), the Diocesan Development Services (DDS), based in Kogi State, Nigeria, and a major development donor based in Europe that led to the establishment of a programme designed to promote the Virtues of a tobacco-based insecticide to small-scale farmers. The Tobacco Insecticide Programme (TIP) began in the late 1980s and ended in 200 1, absorbing significant quantities of resource in the process. TIP began with exploratory investigations of efficacy on the DDS seed multiplication farm followed by stages of researcher-managed and farmer-managed on-farm trials. A survey in 2002 assessed adoption of the technology by farmers. While yield benefits from using the insecticide were nearly always positive and statistically significant relative to an untreated control, they were not as good as commercial insecticides. However, adoption of the tobacco insecticide by local farmers was poor. The paper discusses the reasons for poor adoption, including relative benefits in gross margin, and uses the TIP example to explore the differing power relationships that exist between donors, their field partners and farmers. (C) 2004 by The Haworth Press, Inc. All rights reserved.