26 resultados para N-acetyl-transferases

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 muM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect oil AChE activity but a Strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylan, a hemicellulosic component of the plant cell wall, is one of the most abundant polysaccharides in nature. In contrast to dicots, xylan in grasses is extensively modified by alpha-(1,2)- and alpha-(1,3)-linked arabinofuranose. Despite the importance of grass arabinoxylan in human and animal nutrition and for bioenergy, the enzymes adding the arabinosyl substitutions are unknown. Here we demonstrate that knocking-down glycosyltransferase (GT) 61 expression in wheat endosperm strongly decreases alpha-(1,3)-linked arabinosyl substitution of xylan. Moreover, heterologous expression of wheat and rice GT61s in Arabidopsis leads to arabinosylation of the xylan, and therefore provides gain-of-function evidence for alpha-(1,3)-arabinosyltransferase activity. Thus, GT61 proteins play a key role in arabinoxylan biosynthesis and therefore in the evolutionary divergence of grass cell walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient and rapid synthesis of 1-acetyl-1H-indol-3-yl acetate 1 and its derivatives 7 via the microwave-assisted cyclisation and decarboxylation of 2-[(carboxymethyl)amino]benzoic acids 5 is described. The latter were left to react with acetic anhydride using triethylamine as the base and were subjected to microwave irradiation for 1 minute, at 80 °C with initial power of 300 W. The target 1-acetyl-1H-indol-3-yl acetate 1 and derivatives 7 were isolated in 34-71% yield. In particular, synthesis of 1-acetyl-6-(trifluoromethyl)-1H-indol-3-yl acetate 7f and 1-acetyl-3-methyl-1H-indol-3-yl acetate 7h is reported for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The location of extracellular enzymes within the soil architecture and their association with the various soil components affects their catalytic potential. A soil fractionation study was carried out to investigate: (a) the distribution of a range of hydrolytic enzymes involved in C, N and P transformations, (b) the effect of the location on their respective kinetics, (c) the effect of long-term N fertilizer management on enzyme distribution and kinetic parameters. Soil (silty clay loam) from grassland which had received 0 or 200 kg N ha(-1) yr(-1) was fractionated, and four particle-size fractions (> 200, 200-63, 63-2 and 0. 1-2 mum) were obtained by a combination of wet-sieving and centrifugation, after low-energy ultrasonication. All fractions were assayed for four carbohydrases (beta-cellobiohydrolase, N-acetyl-beta-glucosammidase, beta-glucosidase and beta-xylosidase), acid phosphatase and leucine-aminopeptidase using a microplate fluorimetric assay based on MUB-substrates. Enzyme kinetics (V-max and K-m) were estimated in three particle-size fractions and the unfractionated soil. The results showed that not all particle-size fractions were equally enzymatically active and that the distribution of enzymes between fractions depended on the enzyme. Carbohydrases predominated in the coarser fractions while phosphatase and leucine-aminopeptidase were predominant in the clay-size fraction. The Michaelis constant (K.) varied among fractions, indicating that the association of the same enzyme with different particle-size fractions affected its substrate affinity. The same values of Km were found in the same fractions from the soil under two contrasting fertilizer management regimes, indicating that the Michaelis constant was unaffected by soil changes caused by N fertilizer management. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer (NK) cell recognition of influenza virus-infected cells involves hemagglutinin (HA) binding to sialic acid (SA) on activating NK receptors. SA also acts as a receptor for the binding of influenza virus to its target host cells. The SA binding properties of H3N2 influenza viruses have been observed to change during circulation in humans: recent isolates are unable to agglutinate chicken red blood cells and show reduced affinity for synthetic glycopolymers representing SA-alpha-2,3-lactose (3'SL-PAA) and SA-alpha-2,6-N-acetyl lactosamine (6'SLN-PAA) carbohydrates. Here, NK lysis of cells infected with human H3N2 influenza viruses isolated between 1969 and 2003 was analyzed. Cells infected with recent isolates (1999 to 2003) were found to be lysed less effectively than cells infected with older isolates (1969 to 1996). This change occurred concurrently with the acquisition of two new potential glycosylation site motifs in RA. Deletion of the potential glycosylation site motif at 133 to 135 in HA1 from a recent isolate partially restored the agglutination phenotype to a recombinant virus, indicating that the HA-SA interaction is inhibited by the glycosylation modification. Deletion of either of the recently acquired potential glycosylation sites from HA led to increased NK lysis of cells infected with recombinant viruses carrying modified HA. These results indicate that alterations in RA glycosylation may affect NK cell recognition of influenza virus-infected cells in addition to virus binding to host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments. Depending on the functional group introduced, the K(i) values varied from 16.5 microM to 1200 microM. In order to rationalize the kinetic results, we determined the crystal structures of the analogs in complex with GP. All the inhibitors bound at the catalytic site of the enzyme, by making direct and water-mediated hydrogen bonds with the protein and by inducing minor movements of the side chains of Asp283 and Asn284, of the 280s loop that blocks access of the substrate glycogen to the catalytic site, and changes in the water structure in the vicinity of the site. The differences observed in the Ki values of the analogs can be interpreted in terms of variations in hydrogen bonding and van der Waals interactions, desolvation effects, ligand conformational entropy, and displacement of water molecules on ligand binding to the catalytic site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine acetyltransferase (SAT) catalyzes the first step of cysteine synthesis in microorganisms and higher plants. Here we present the 2.2 Angstrom crystal structure of SAT from Escherichia coli, which is a dimer of trimers, in complex with cysteine. The SAT monomer consists of an amino-terminal alpha-helical domain and a carboxyl- terminal left-handed beta-helix. We identify His(158) and Asp(143) as essential residues that form a catalytic triad with the substrate for acetyl transfer. This structure shows the mechanism by which cysteine inhibits SAT activity and thus controls its own synthesis. Cysteine is found to bind at the serine substrate site and not the acetyl-CoA site that had been reported previously. On the basis of the geometry around the cysteine binding site, we are able to suggest a mechanism for the O-acetylation of serine by SAT. We also compare the structure of SAT with other left-handed beta-helical structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[15-(CH3)-C-13-H-2]-dihydro-epi-deoxyarteannuin B (4a) has been fed to intact Artemisia annua plants via the root and three labeled metabolites (17a-19a) have been identified by 1D- and 2D-NMR spectroscopies. The in vivo transformations of 4a in A. annua are proposed to involve enzymatically-mediated processes in addition to possible spontaneous autoxidation. In the hypothetical spontaneous autoxidation pathway, the tri-substituted double bond in 4a appears to have undergone 'ene-type' reaction with oxygen to form an allylic hydroperoxide, which subsequently rearranges to the allylic hydroxyl group in the metabolite 3 alpha-hydroxy-dihydro-epi-deoxyarteannuin B (17a). In the enzymatically-mediated pathways, compound 17a has then been converted to its acetyl derivative, 3 alpha-acetoxy-dihydro-epi-deoxyarteannuin B (18a), while oxidation of 4a at the 'unactivated' 9-position has yielded 9 beta-hydroxy-dihydro-epi-deoxyarteannuin B (19a). Although all of the natural products artemisinin ( 1), arteannuin K ( 7), arteannuin L ( 8), and arteannuin M ( 9) have been suggested previously as hypothetical metabolites from dihydro-epi-deoxyarteannuin B in A. annua, none were isolated in labeled form in this study. It is argued that the nature of the transformations undergone by compound 4a are more consistent with a degradative metabolism, designed to eliminate this compound from the plant, rather than with a role as a late precursor in the biosynthesis of artemisinin or other natural products from A. annua. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of eight synthetic self-assembling terminally blocked tripeptides have been studied for gelation. Some of them form gels in various aromatic solvents including benzene, toluene, xylene, and chlorobenzene. It has been found that the protecting groups play an important role in the formation of organogels. It has been observed that, if the C-terminal has been changed from methyl ester to ethyl ester the gelation property does not change significantly (keeping the N-terminal protecting group same), while the change of the protecting group from ethyl ester to isopropyl ester completely abolishes the gelation property. Similarly, keeping the identical C-terminal protecting group (methyl ester) the results of the gelation study indicate that the substitution of N-terminal protection Boc-(tert-butyloxycarbonyl) to Cbz-(benzyloxycarbonyl) does change the gelation property insignificantly, while the change from Boc- to pivaloyl (Piv-) or acetyl (Ac-) group completely eliminates the gelation property. Morphological studies of the dried gels of two of the peptides indicate the presence of an entangled nano-fibrillar network that might be responsible for gelation. FTIR studies of the gels demonstrate that an intermolecular hydrogen bonding network is formed during gelation. Results of X-ray powder diffraction studies for these gelator peptides in different states (dried gels, gel, and bulk solids) reflected that the structure in the wet gel is distinctly different from the dried gel and solid state structures. Single crystal X-ray diffraction studies of a non-gelator peptide, which is structurally similar to the gelator molecules reveal that the peptide forms an antiparallel beta-sheet structure in crystals. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and reactive properties of the acetyl-protected "one-legged" manganese porphyrin [SAc]P-Mn(III)Cl on Ag(100) have been studied by NEXAFS, synchrotron XPS and STM Spontaneous surface-mediated deprotection occurs at 300 K accompanied by spreading of the resulting thio-tethered porphyrin across the metal surface Loss of the axial chlorine ligand occurs at 498 K, without any demetalation of the macrocycle, leaving the Mn center in a low co-ordination state At low coverages the macrocycle is markedly tilted toward the silver surface, as is the phenyl group that forms part of the tethering "leg". In the monolayer region a striking transition occurs whereby the molecule rolls over, preserving the tilt angle of the phenyl group, strongly increasing that of the macrocycle, decreasing the apparent height of the molecule and decreasing its footprint, thus enabling closer packing These findings are in marked contrast with those previously reported for the corresponding more rigidly bound four-legged porphyrin [Turner, M., Vaughan, O. P. H., Kyriakou, G., Watson, D. J., Scherer, L. J; Davidson, G J. E, Sanders, J. K. M.; Lambert, R. M J. Am. Chem Soc 2009, 131, 1910] suggesting that the physicochemical :)properties and potential applications of these versatile systems should be strongly dependent on the mode of tethering to the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption and subsequent thermal chemistry of the acetyl-protected manganese porphyrin, [SA(C)](4)P-Mn(III)Cl on Ag(100) have been studied by high resolution XPS and temperature-programmed desorption. The deprotection event, leading to formation of the covalently bound thioporphyrin, has been characterized and the conditions necessary for removal of the axial chlorine ligand have been determined, thus establishing a methodology for creating tethered activated species that could serve as catalytic sites for delicate oxidation reactions. Surface-mediated acetyl deprotection occurs at 298 K, at which temperature porphyrin diffusion is limited. At temperatures above similar to 425 K porphyrin desorption, diffusion and deprotection occur and at >470 K the axial chlorine is removed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first examples of highly enantioselective [2,3]-sigmatropic rearrangements of acyclic allylic ammonium ylids are reported. Thus, a range of N-{2‘-[(N‘-allyl-N‘,N‘-dialkyl)ammonium]}acetyl camphor sultams undergo rearrangement at 0 °C in DME solution with high diastereofacial control (up to 99:1 dr) to give allylglycines in generally high yield. The power of the method has been demonstrated in a rapid and efficient synthesis of (R)-allyl glycine.