33 resultados para N-HETEROCYCLIC CARBENE
em CentAUR: Central Archive University of Reading - UK
Resumo:
A dialkylborenium ion stabilized by an N-heterocyclic carbene has been prepared for the first time by reaction of IMes-9-BBN-H with triflic acid. The ion-separated nature of the borenium ion was confirmed by 1H and 19F diffusion ordered NMR spectroscopy.
Resumo:
Chiral N-heterocyclic carbene–borane complexes have been synthesised, and have been shown to reduce ketones with Lewis acid promotion. Chiral N-heterocyclic carbene–borane and –diorganoborane complexes can reduce ketones with enantioselectivities up to 75% and 85% ee, respectively.
Resumo:
Carbenes photogenerated from the novel bisdiazirine, 1, 3-bis(3-(trifluoromethyl)diazirin-3-yl) benzene 1, have been applied successfully to cross-linking of mono-methyl poly(ethylene oxide) (MePEO5000) in the presence of dichloromethane, leading to the simultaneous incorporation of alkylhalide functionalities. The PEO-based gels swell in a wide range of solvents with polarity index values varying from 3.1 to 9.0. Reaction of the alkylhalide functionalities present in the gels with 4-phenylazophenol provided loading capacities of up to 0.20 mmol g(-1) and demonstrated the potential of these materials for gel-phase synthesis applications. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Homopolymerization of alkylarylcarbenes derived from diazirine monomers that featured benzyl alcohol or phenol residues was found to lead to the production of soluble hyperbranched poly(aryl ether)s. The polymerization process was influenced by the solvents employed, monomer concentration, and the reaction time. An increase in the monomer concentration and reaction time was found to lead to an increase in the molecular weight characteristics of the resulting polymers as determined by gel permeation chromatography (GPC). The composition and architecture of the polyethers were determined by nuclear magnetic resonance (NMR) spectroscopic analysis and were found to be highly complex and dependent on the structure of the monomers used. All of the polymers were found to contain ether linkages formed via carbene insertion into O-H bonds, although polymers derived from phenolic carbenes also contained linkages arising from C-alkylation.
Resumo:
The diazirine functionalised fluorenone, 3-[3-(trifluoromethyl)diazirin-3-yl]phenyl-9-oxo-9H-fluorene-2-carboxyla te was synthesised to act as a model compound capable of modifying a wide variety of polymeric substrates. Photochemical activation of the diazirine moiety of the fluorenone derivative was utilised to afford highly reactive carbenes capable of insertion into or addition to a wide variety of functionalities. In this paper the photoinduced attachment of a fluorenone derivative to nylon 6,6 has been studied using UV-visible spectroscopic analysis. Incorporation of the fluorenone chromophore onto the backbone of nylon at different loading levels and after different coating cycles has been investigated and is detailed in this paper.
Resumo:
A novel diazirine functionalised aniline derivative, 3-(3-aminophenyl)-3-methyldiazirine 1, was prepared and employed as an AB(2)-type monomer in the synthesis of hyperbranched polymers; thus providing the first instance in which polyamines have been prepared via carbene insertion polymerisation. Photolysis of the monomer 1 in bulk and in solution resulted in the formation of hyperbranched poly(aryl amine)s with degrees of polymerisation (DP) varying from 9 to 26 as determined by gel permeation chromatography (GPC). In solution, an increase in the initial monomer concentration was generally found to result in a decrease in the molecular weight characteristics of the resulting poly(aryl amine) s. Subsequent thermal treatment of the poly(aryl amine) s caused a further increase in the DP values up to a maximum of 31. Nuclear magnetic resonance (NMR) spectroscopic analysis revealed that the increase in molecular weight upon thermal treatment resulted from hydroamination of styrenic species formed in the initial photopolymerisation or activation of diazirine moieties.
Resumo:
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.
Resumo:
Multiple parallel synthesis and evaluation have been combined in order to identify new nitrogen heterocycles for the partitioning of minor actinides(III) such as americium(III) from lanthanides such as europium(Ill). An array of triazine-containing molecules was made using multiple parallel syntheses from diketones and amide hydrazides. An excess of each of the resulting purified reagents was dissolved in 1,1,2,2-tetrachloroethane containing 2-bromodecanoic acid, and equilibrated with an aqueous solution containing the radiotracers Eu-152 and Am-241 in nitric acid ([Eu] + [Am] < 400 nanomol dm(-3)). Gamma counting of the organic and aqueous phases led to the identification of several new reagents for the selective extraction of americium(III). In particular, 6-(2-pyridyl)-2-(5,6-dialkyl-1,2,4-triazaphenyl)pyridines were found to be effective reagents for the separation of americium(III) from europium(III), (SFAm/Eu was ca. 30 in [HNO3] = 0.013 mol/L).
Resumo:
The development of new methods for the efficient synthesis of aziridines has been of considerable interest to researchers for more than 60 years, but no single method has yet emerged as uniformly applicable, especially for asymmetric synthesis of chiral aziridines. One method which has been intensely examined and expanded of late involves the nucleophilic addition to imines by anions bearing a-leaving groups; by analogy with the glycidate epoxide synthesis, these processes are often described as "aza-Darzens reactions". This Microreview gives a summary of the area, with a focus on contemporary developments. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
The removal of the most long-lived radiotoxic elements from used nuclear fuel, minor actinides, is foreseen as an essential step toward increasing the public acceptance of nuclear energy as a key component of a low-carbon energy future. Once removed from the remaining used fuel, these elements can be used as fuel in their own right in fast reactors or converted into shorter-lived or stable elements by transmutation prior to geological disposal. The SANEX process is proposed to carry out this selective separation by solvent extraction. Recent efforts to develop reagents capable of separating the radioactive minor actinides from lanthanides as part of a future strategy for the management and reprocessing of used nuclear fuel are reviewed. The current strategies for the reprocessing of PUREX raffinate are summarized, and some guiding principles for the design of actinide-selective reagents are defined. The development and testing of different classes of solvent extraction reagent are then summarized, covering some of the earliest ligand designs right through to the current reagents of choice, bis(1,2,4-triazine) ligands. Finally, we summarize research aimed at developing a fundamental understanding of the underlying reasons for the excellent extraction capabilities and high actinide/lanthanide selectivities shown by this class of ligands and our recent efforts to immobilize these reagents onto solid phases.
Resumo:
The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV
Resumo:
New Mo(II) complexes with 2,2'-dipyridylamine (L1), [Mo(CH(3)CN)(eta(3)-C(3)H(5))(CO)(2)(L1)]OTf (C1a) and [{MoBr(eta(3)-C(3)H(5))(CO)(2)(L1)}(2)(4,4'-bipy)](PF(6))(2) (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] (C3), were prepared and characterized by FTIR and (1)H and (13)C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a kappa(2)-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] with L3 acting as a kappa(2)-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations. The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.
Resumo:
A range of linear polyurethanes featuring aliphatic, aromatic and ether residues have been prepared by co-polymerisation of novel 'masked' isocyanate A(2)-type monomers and diols. The reactive isocyanate monomers were generated in situ via the triphenylphosphine mediated decomposition of the heterocyclic disulfide, 1,2,4-dithiazolidine-3,5-dione. Two different synthetic approaches were examined and assessed for the construction of the novel A(2)-type monomers, which involved either coupling two 1,2,4-dithiazolidine-3,5-diones together through a spacer group or construction of 1,2,4-dithiazolidine-3,5-diones directly from diamines. The resulting polyurethanes were purified via solvent extraction and analysed using GPC, NMR and IR spectroscopic analyses. Molecular weight data were obtained and compared from both GPC and H-1 NMR (via end-group analysis) spectroscopic analysis. The thermal properties of the polyurethanes were determined using DSC and their solubility in common aprotic organic solvents was also assessed and related to their structural composition. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Many different reagents and methodologies have been utilised for the modification of synthetic and biological macromolecular systems. In addition, an area of intense research at present is the construction of hybrid biosynthetic polymers, comprised of biologically active species immobilised or complexed with synthetic polymers. One of the most useful and widely applicable techniques available for functionalisation of macromolecular systems involves indiscriminate carbene insertion processes. The highly reactive and non-specific nature of carbenes has enabled a multitude of macromolecular structures to be functionalised without the need for specialised reagents or additives. The use of diazirines as stable carbene precursors has increased dramatically over the past twenty years and these reagents are fast becoming the most popular photophors for photoaffinity labelling and biological applications in which covalent modification of macromolecular structures is the basis to understanding structure-activity relationships. This review reports the synthesis and application of a diverse range of diazirines in macromolecular systems.
Resumo:
The results of time-resolved gas phase studies of labile germylenes (GeH2 and GeMe2) and dimethylstannylene (SnMe2) reactions reported to date are considered together with data of quantum-chemical investigations of the potential energy surfaces of these systems. Reaction mechanisms are discussed. A comparison of reactivity in the series of carbene analogs, ER2 (E = Si, Ge, Sn, R = H, Me), is made.