55 resultados para Muti-Modal Biometrics, User Authentication, Fingerprint Recognition, Palm Print Recognition
em CentAUR: Central Archive University of Reading - UK
Resumo:
A Universal Serial Bus (USB) Mass Storage Device (MSD), often termed a USB flash drive, is ubiquitously used to store important information in unencrypted binary format. This low cost consumer device is incredibly popular due to its size, large storage capacity and relatively high transfer speed. However, if the device is lost or stolen an unauthorized person can easily retrieve all the information. Therefore, it is advantageous in many applications to provide security protection so that only authorized users can access the stored information. In order to provide security protection for a USB MSD, this paper proposes a session key agreement protocol after secure user authentication. The main aim of this protocol is to establish session key negotiation through which all the information retrieved, stored and transferred to the USB MSD is encrypted. This paper not only contributes an efficient protocol, but also does not suffer from the forgery attack and the password guessing attack as compared to other protocols in the literature. This paper analyses the security of the proposed protocol through a formal analysis which proves that the information is stored confidentially and is protected offering strong resilience to relevant security attacks. The computational cost and communication cost of the proposed scheme is analyzed and compared to related work to show that the proposed scheme has an improved tradeoff for computational cost, communication cost and security.
Resumo:
Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.
Resumo:
This paper introduces a novel approach for free-text keystroke dynamics authentication which incorporates the use of the keyboard’s key-layout. The method extracts timing features from specific key-pairs. The Euclidean distance is then utilized to find the level of similarity between a user’s profile data and his/her test data. The results obtained from this method are reasonable for free-text authentication while maintaining the maximum level of user relaxation. Moreover, it has been proven in this study that flight time yields better authentication results when compared with dwell time. In particular, the results were obtained with only one training sample for the purpose of practicality and ease of real life application.
Resumo:
Context-aware multimodal interactive systems aim to adapt to the needs and behavioural patterns of users and offer a way forward for enhancing the efficacy and quality of experience (QoE) in human-computer interaction. The various modalities that constribute to such systems each provide a specific uni-modal response that is integratively presented as a multi-modal interface capable of interpretation of multi-modal user input and appropriately responding to it through dynamically adapted multi-modal interactive flow management , This paper presents an initial background study in the context of the first phase of a PhD research programme in the area of optimisation of data fusion techniques to serve multimodal interactivite systems, their applications and requirements.
Resumo:
This paper proposes a novel method of authentication of users in secure buildings. The main objective is to investigate whether user actions in the built environment can produce consistent behavioural signatures upon which a building intrusion detection system could be based. In the process three behavioural expressions were discovered: time-invariant, co-dependent and idiosyncratic.
Resumo:
Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.
Resumo:
Automated border control (ABC) is concerned with fast and secure processing for intelligence-led identification. The FastPass project aims to build a harmonised, modular reference system for future European ABC. When biometrics is taken on board as identity, spoofing attacks become a concern. This paper presents current research in algorithm development for counter-spoofing attacks in biometrics. Focussing on three biometric traits, face, fingerprint, and iris, it examines possible types of spoofing attacks, and reviews existing algorithms reported in relevant academic papers in the area of countering measures to biometric spoofing attacks. It indicates that the new developing trend is fusion of multiple biometrics against spoofing attacks.
Resumo:
Periocular recognition has recently become an active topic in biometrics. Typically it uses 2D image data of the periocular region. This paper is the first description of combining 3D shape structure with 2D texture. A simple and effective technique using iterative closest point (ICP) was applied for 3D periocular region matching. It proved its strength for relatively unconstrained eye region capture, and does not require any training. Local binary patterns (LBP) were applied for 2D image based periocular matching. The two modalities were combined at the score-level. This approach was evaluated using the Bosphorus 3D face database, which contains large variations in facial expressions, head poses and occlusions. The rank-1 accuracy achieved from the 3D data (80%) was better than that for 2D (58%), and the best accuracy (83%) was achieved by fusing the two types of data. This suggests that significant improvements to periocular recognition systems could be achieved using the 3D structure information that is now available from small and inexpensive sensors.
Resumo:
Multispectral iris recognition uses information from multiple bands of the electromagnetic spectrum to better represent certain physiological characteristics of the iris texture and enhance obtained recognition accuracy. This paper addresses the questions of single versus cross spectral performance and compares score-level fusion accuracy for different feature types, combining different wavelengths to overcome limitations in less constrained recording environments. Further it is investigated whether Doddington's “goats” (users who are particularly difficult to recognize) in one spectrum also extend to other spectra. Focusing on the question of feature stability at different wavelengths, this work uses manual ground truth segmentation, avoiding bias by segmentation impact. Experiments on the public UTIRIS multispectral iris dataset using 4 feature extraction techniques reveal a significant enhancement when combining NIR + Red for 2-channel and NIR + Red + Blue for 3-channel fusion, across different feature types. Selective feature-level fusion is investigated and shown to improve overall and especially cross-spectral performance without increasing the overall length of the iris code.
Resumo:
This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms.
Resumo:
The chapter describes development of care bundle documentation, through an iterative, user-centred design process, to support the recognition and treatment of acute kidney injury (AKI). The chapter details stages of user and stakeholder consultation, employed to develop a design response that was sensitive to user experience and need, culminating in simulation testing of a near final prototype. The development of supplementary awareness-raising materials, relating to the main care bundle tool is also discussed. This information design response to a complex clinical decision-making process is contrasted to other approaches to promoting AKI care. The need for different but related approaches to the working tool itself and the tool’s communication are discussed. More general recommendations are made for the development of communication tools to support complex clinical processes.
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
This paper reports the development of a highly parameterised 3-D model able to adopt the shapes of a wide variety of different classes of vehicles (cars, vans, buses, etc), and its subsequent specialisation to a generic car class which accounts for most commonly encountered types of car (includng saloon, hatchback and estate cars). An interactive tool has been developed to obtain sample data for vehicles from video images. A PCA description of the manually sampled data provides a deformable model in which a single instance is described as a 6 parameter vector. Both the pose and the structure of a car can be recovered by fitting the PCA model to an image. The recovered description is sufficiently accurate to discriminate between vehicle sub-classes.
Resumo:
Since the advent of the internet in every day life in the 1990s, the barriers to producing, distributing and consuming multimedia data such as videos, music, ebooks, etc. have steadily been lowered for most computer users so that almost everyone with internet access can join the online communities who both produce, consume and of course also share media artefacts. Along with this trend, the violation of personal data privacy and copyright has increased with illegal file sharing being rampant across many online communities particularly for certain music genres and amongst the younger age groups. This has had a devastating effect on the traditional media distribution market; in most cases leaving the distribution companies and the content owner with huge financial losses. To prove that a copyright violation has occurred one can deploy fingerprinting mechanisms to uniquely identify the property. However this is currently based on only uni-modal approaches. In this paper we describe some of the design challenges and architectural approaches to multi-modal fingerprinting currently being examined for evaluation studies within a PhD research programme on optimisation of multi-modal fingerprinting architectures. Accordingly we outline the available modalities that are being integrated through this research programme which aims to establish the optimal architecture for multi-modal media security protection over the internet as the online distribution environment for both legal and illegal distribution of media products.