6 resultados para Mutation analysis
em CentAUR: Central Archive University of Reading - UK
Resumo:
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
Resumo:
Varroa destructor is a parasitic mite of the Eastern honeybee Apis cerana. Fifty years ago, two distinct evolutionary lineages (Korean and Japanese) invaded the Western honeybee Apis mellifera. This haplo-diploid parasite species reproduces mainly through brother sister matings, a system which largely favors the fixation of new mutations. In a worldwide sample of 225 individuals from 21 locations collected on Western honeybees and analyzed at 19 microsatellite loci, a series of de novo mutations was observed. Using historical data concerning the invasion, this original biological system has been exploited to compare three mutation models with allele size constraints for microsatellite markers: stepwise (SMM) and generalized (GSM) mutation models, and a model with mutation rate increasing exponentially with microsatellite length (ESM). Posterior probabilities of the three models have been estimated for each locus individually using reversible jump Markov Chain Monte Carlo. The relative support of each model varies widely among loci, but the GSM is the only model that always receives at least 9% support, whatever the locus. The analysis also provides robust estimates of mutation parameters for each locus and of the divergence time of the two invasive lineages (67,000 generations with a 90% credibility interval of 35,000-174,000). With an average of 10 generations per year, this divergence time fits with the last post-glacial Korea Japan land separation. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In the present study, a genomic analysis of full VP1 sequence region of 15 clinical re-isolates (14 healthy vaccinees and one bone marrow tumor patient) was conducted, aiming to the identification of mutations and to the assessment of their impact on virus fitness, providing also insights relevant with the natural evolution of Sabin strains. Clinical re-isolates were analyzed by RT-PCR, sequencing and computational analysis. Some re-isolates were characterized by an unusual mutational pattern in which non-synonymous mutations outnumbered the synonymous ones. Furthermore, the majority of amino-acid substitutions were located in the capsid exterior, specifically in N-Ags, near N-Ags and in the north rim of the canyon. Also mutations, which are well-known determinants of attenuation, were identified. The results of this study propose that some re-isolates are characterized by an evolutionary pattern in which non-synonymous mutations with a direct phenotypic impact on viral fitness are fixed in viral genomes, in spite of synonymous ones with no phenotypic impact on viral fitness. Results of the present retrospective characterization of Sabin clinical re-isolates, based on the full VP1 sequence, suggest that vaccine-derived viruses may make their way through narrow breaches and may evolve into transmissible pathogens even in adequately immunized populations. For this reason increased poliovirus laboratory surveillance should be permanent and full VP1 sequence analysis should be conducted even in isolates originating from healthy vaccinees.
Resumo:
About 5.5% of all UK hemophilia B patients have the base substitution IVS 5+13 A-->G as the only change in their factor (F)IX gene (F9). This generates a novel donor splice site which fits the consensus better than the normal intron 5 donor splice. Use of the novel splice site should result in a missense mutation followed by the abnormal addition of four amino acids to the patients' FIX. In order to explain the prevalence of this mutation, its genealogical history is examined. Analysis of restriction fragment length polymorphism in the 21 reference UK individuals (from different families) with the above mutation showed identical haplotypes in 19 while two differed from the rest and from each other. In order to investigate the history of the mutation and to verify that it had occurred independently more than once, the sequence variation in 1.5-kb segments scattered over a 13-Mb region including F9 was examined in 18 patients and 15 controls. This variation was then analyzed with a recently developed Bayesian approach that reconstructs the genealogy of the gene investigated while providing evidence of independent mutations that contribute disconnected branches to the genealogical tree. The method also provides minimum estimates of the age of the mutation inherited by the members of coherent trees. This revealed that 17 or 18 mutant genes descend from a founder who probably lived 450 years ago, while one patient carries an independent mutation. The independent recurrence of the IVS5+13 A-->G mutation strongly supports the conclusion that it is the cause of these patients' mild hemophilia.
Resumo:
Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to Mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter Theta to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of Theta, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.
Resumo:
Background: We and others have described the neurodegenerative disorder caused by G51D SNCA mutation which shares characteristics of Parkinson’s disease (PD) and multiple system atrophy (MSA). The objective of this investigation was to extend the description of the clinical and neuropathological hallmarks of G51D mutant SNCA-associated disease by the study of two additional cases from a further G51D SNCA kindred and to compare the features of this group with a SNCA duplication case and a H50Q SNCA mutation case. Results: All three G51D patients were clinically characterised by parkinsonism, dementia, visual hallucinations, autonomic dysfunction and pyramidal signs with variable age at disease onset and levodopa response. The H50Q SNCA mutation case had a clinical picture that mimicked late-onset idiopathic PD with a good and sustained levodopa response. The SNCA duplication case presented with a clinical phenotype of frontotemporal dementia with marked behavioural changes, pyramidal signs, postural hypotension and transiently levodopa responsive parkinsonism. Detailed post-mortem neuropathological analysis was performed in all cases. All three G51D cases had abundant α-synuclein pathology with characteristics of both PD and MSA. These included widespread cortical and subcortical neuronal α-synuclein inclusions together with small numbers of inclusions resembling glial cytoplasmic inclusions (GCIs) in oligodendrocytes. In contrast the H50Q and SNCA duplication cases, had α-synuclein pathology resembling idiopathic PD without GCIs. Phosphorylated α-synuclein was present in all inclusions types in G51D cases but was more restricted in SNCA duplication and H50Q mutation. Inclusions were also immunoreactive for the 5G4 antibody indicating their highly aggregated and likely fibrillar state. Conclusions: Our characterisation of the clinical and neuropathological features of the present small series of G51D SNCA mutation cases should aid the recognition of this clinico-pathological entity. The neuropathological features of these cases consistently share characteristics of PD and MSA and are distinct from PD patients carrying the H50Q or SNCA duplication.