4 resultados para Murray Valley encephalitis virus
em CentAUR: Central Archive University of Reading - UK
Resumo:
An attenuated strain (263) of the tick-borne encephalitis virus, isolated from field ticks, was either serially subcultured, 5 times in mice, or at 40 degrees C in PS cells, producing 2 independent strains, 263-m5 and 263-TR with identical genomes; both strains exhibited increased plaque size, neuroinvasiveness and temperature-resistance. Sequencing revealed two unique amino acid substitutions, one mapping close to the catalytic site of the viral protease. These observations imply that virus adaptation from ticks to mammals occurs by selection of pre-existing virulent variants from the quasispecies population rather than by the emergence of new random mutations. The significance of these observations is discussed. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents.
Resumo:
Tick-borne encephalitis virus (TBEV) causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA) virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A) in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards across Europe by adaptation to the indigenous tick species and if they are associated with severe forms of TBE.
Resumo:
Here, we analyze the complete coding sequences of all recognized tick-borne flavivirus species, including Gadgets Gully, Royal Farm and Karshi virus, seabird-associated flaviviruses, Kadam virus and previously uncharacterized isolates of Kyasanur Forest disease virus and Omsk hemorrhagic fever virus. Significant taxonomic improvements are proposed, e.g. the identification of three major groups (mammalian, seabird and Kadam tick-borne flavivirus groups), the creation of a new species (Karshi virus) and the assignment of Tick-borne encephalitis and Louping ill viruses to a unique species (Tick-borne encephalitis virus) including four viral types (i.e. Western Tick-borne encephalitis virus, Eastern Tick-borne encephalitis virus, Turkish sheep Tick-borne encephalitis virus and Louping ill Tick-borne encephalitis virus). The analyses also suggest a complex relationship between viruses infecting birds and those infecting mammals. Ticks that feed on both categories of vertebrates may constitute the evolutionary bridge between the three distinct identified lineages.