131 resultados para Multisolitary wave solutions
em CentAUR: Central Archive University of Reading - UK
Resumo:
We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usually connected with integrability, for which there is at present no analytic proof. Thus we study in particular the resolution property of arbitrary initial profiles into sequences of solitary waves for both equations and clean interaction of Benjamin-Ono solitary waves. We also verify numerically that the behaviour of the solution of the Intermediate Long Wave equation as the model parameter tends to the infinite depth limit is the one predicted by the theory.
Resumo:
High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.
Resumo:
Wave solutions to a mechanochemical model for cytoskeletal activity are studied and the results applied to the waves of chemical and mechanical activity that sweep over an egg shortly after fertilization. The model takes into account the calcium-controlled presence of actively contractile units in the cytoplasm, and consists of a viscoelastic force equilibrium equation and a conservation equation for calcium. Using piecewise linear caricatures, we obtain analytic solutions for travelling waves on a strip and demonstrate uiat the full nonlinear system behaves as predicted by the analytic solutions. The equations are solved on a sphere and the numerical results are similar to the analytic solutions. We indicate how the speed of the waves can be used as a diagnostic tool with which the chemical reactivity of the egg surface can be measured.
Resumo:
The problem of scattering of time-harmonic acoustic waves by an inhomogeneous fluid layer on a rigid plate in R2 is considered. The density is assumed to be unity in the media: within the layer the sound speed is assumed to be an arbitrary bounded measurable function. The problem is modelled by the reduced wave equation with variable wavenumber in the layer and a Neumann condition on the plate. To formulate the problem and prove uniqueness of solution a radiation condition appropriate for scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condition for diffraction gratings. With the help of the radiation condition the problem is reformulated as a system of two second kind integral equations over the layer and the plate. Under additional assumptions on the wavenumber in the layer, uniqueness of solution is proved and the nonexistence of guided wave solutions of the homogeneous problem established. General results on the solvability of systems of integral equations on unbounded domains are used to establish existence and continuous dependence in a weighted norm of the solution on the given data.
Resumo:
A model of species migration is presented which takes the form of a reaction-diffusion system. We consider special limits of this model in which we demonstrate the existence of travelling wave solutions. These solutions can be used to describe the migration of cells, bacteria, and some organisms. © 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.
Resumo:
The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective.
Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0
Resumo:
In this paper we derive novel approximations to trapped waves in a two-dimensional acoustic waveguide whose walls vary slowly along the guide, and at which either Dirichlet (sound-soft) or Neumann (sound-hard) conditions are imposed. The guide contains a single smoothly bulging region of arbitrary amplitude, but is otherwise straight, and the modes are trapped within this localised increase in width. Using a similar approach to that in Rienstra (2003), a WKBJ-type expansion yields an approximate expression for the modes which can be present, which display either propagating or evanescent behaviour; matched asymptotic expansions are then used to derive connection formulae which bridge the gap across the cut-off between propagating and evanescent solutions in a tapering waveguide. A uniform expansion is then determined, and it is shown that appropriate zeros of this expansion correspond to trapped mode wavenumbers; the trapped modes themselves are then approximated by the uniform expansion. Numerical results determined via a standard iterative method are then compared to results of the full linear problem calculated using a spectral method, and the two are shown to be in excellent agreement, even when $\epsilon$, the parameter characterising the slow variations of the guide’s walls, is relatively large.
Resumo:
We consider the approximation of solutions of the time-harmonic linear elastic wave equation by linear combinations of plane waves. We prove algebraic orders of convergence both with respect to the dimension of the approximating space and to the diameter of the domain. The error is measured in Sobolev norms and the constants in the estimates explicitly depend on the problem wavenumber. The obtained estimates can be used in the h- and p-convergence analysis of wave-based finite element schemes.
Resumo:
Pitch-angle scattering of electrons can limit the stably trapped particle flux in the magnetosphere and precipitate energetic electrons into the ionosphere. Whistler-mode waves generated by a temperature anisotropy can mediate this pitch-angle scattering over a wide range of radial distances and latitudes, but in order to correctly predict the phase-space diffusion, it is important to characterise the whistler-mode wave distributions that result from the instability. We use previously-published observations of number density, pitch-angle anisotropy and phase space density to model the plasma in the quiet pre-noon magnetosphere (defined as periods when AE<100nT). We investigate the global propagation and growth of whistler-mode waves by studying millions of growing ray paths and demonstrate that the wave distribution at any one location is a superposition of many waves at different points along their trajectories and with different histories. We show that for observed electron plasma properties, very few raypaths undergo magnetospheric reflection, most rays grow and decay within 30 degrees of the magnetic equator. The frequency range of the wave distribution at large L can be adequately described by the solutions of the local dispersion relation, but the range of wavenormal angle is different. The wave distribution is asymmetric with respect to the wavenormal angle. The numerical results suggest that it is important to determine the variation of magnetospheric parameters as a function of latitude, as well as local time and L-shell.
Resumo:
The long time–evolution of disturbances to slowly–varying solutions of partial differential equations is subject to the adiabatic invariance of the wave action. Generally, this approximate conservation law is obtained under the assumption that the partial differential equations are derived from a variational principle or have a canonical Hamiltonian structure. Here, the wave action conservation is examined for equations that possess a non–canonical (Poisson) Hamiltonian structure. The linear evolution of disturbances in the form of slowly varying wavetrains is studied using a WKB expansion. The properties of the original Hamiltonian system strongly constrain the linear equations that are derived, and this is shown to lead to the adiabatic invariance of a wave action. The connection between this (approximate) invariance and the (exact) conservation laws of pseudo–energy and pseudomomentum that exist when the basic solution is exactly time and space independent is discussed. An evolution equation for the slowly varying phase of the wavetrain is also derived and related to Berry's phase.
Resumo:
Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection–diffusion equations. We demonstrate how a number of Runge–Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge–Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge–Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.
Resumo:
A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer’s law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial thickness in the parameter regime that yields two stationary solutions.
Resumo:
It is shown that Bretherton's view of baroclinic instability as the interaction of two counter-propagating Rossby waves (CRWs) can be extended to a general zonal flow and to a general dynamical system based on material conservation of potential vorticity (PV). The two CRWs have zero tilt with both altitude and latitude and are constructed from a pair of growing and decaying normal modes. One CRW has generally large amplitude in regions of positive meridional PV gradient and propagates westwards relative to the flow in such regions. Conversely, the other CRW has large amplitude in regions of negative PV gradient and propagates eastward relative to the zonal flow there. Two methods of construction are described. In the first, more heuristic, method a ‘home-base’ is chosen for each CRW and the other CRW is defined to have zero PV there. Consideration of the PV equation at the two home-bases gives ‘CRW equations’ quantifying the evolution of the amplitudes and phases of both CRWs. They involve only three coefficients describing the mutual interaction of the waves and their self-propagation speeds. These coefficients relate to PV anomalies formed by meridional fluid displacements and the wind induced by these anomalies at the home-bases. In the second method, the CRWs are defined by orthogonality constraints with respect to wave activity and energy growth, avoiding the subjective choice of home-bases. Using these constraints, the same form of CRW equations are obtained from global integrals of the PV equation, but the three coefficients are global integrals that are not so readily described by ‘PV-thinking’ arguments. Each CRW could not continue to exist alone, but together they can describe the time development of any flow whose initial conditions can be described by the pair of growing and decaying normal modes, including the possibility of a super-modal growth rate for a short period. A phase-locking configuration (and normal-mode growth) is possible only if the PV gradient takes opposite signs and the mean zonal wind and the PV gradient are positively correlated in the two distinct regions where the wave activity of each CRW is concentrated. These are easily interpreted local versions of the integral conditions for instability given by Charney and Stern and by Fjørtoft.
Resumo:
The Kelvin Helmholtz (KH) problem, with zero stratification, is examined as a limiting case of the Rayleigh model of a single shear layer whose width tends to zero. The transition of the Rayleigh modal dispersion relation to the KH one, as well as the disappearance of the supermodal transient growth in the KH limit, are both rationalized from the counterpropagating Rossby wave perspective.