5 resultados para Multiple-trip Bias
em CentAUR: Central Archive University of Reading - UK
Resumo:
Satellite data are used to quantify and examine the bias in the outgoing long-wave (LW) radiation over North Africa during May–July simulated by a range of climate models and the Met Office global numerical weather prediction (NWP) model. Simulations from an ensemble-mean of multiple climate models overestimate outgoing clear-sky long-wave radiation (LWc) by more than 20 W m−2 relative to observations from Clouds and the Earth's Radiant Energy System (CERES) for May–July 2000 over parts of the west Sahara, and by 9 W m−2 for the North Africa region (20°W–30°E, 10–40°N). Experiments with the atmosphere-only version of the High-resolution Hadley Centre Global Environment Model (HiGEM), suggest that including mineral dust radiative effects removes this bias. Furthermore, only by reducing surface temperature and emissivity by unrealistic amounts is it possible to explain the magnitude of the bias. Comparing simulations from the Met Office NWP model with satellite observations from Geostationary Earth Radiation Budget (GERB) instruments suggests that the model overestimates the LW by 20–40 W m−2 during North African summer. The bias declines over the period 2003–2008, although this is likely to relate to improvements in the model and inhomogeneity in the satellite time series. The bias in LWc coincides with high aerosol dust loading estimated from the Ozone Monitoring Instrument (OMI), including during the GERBILS field campaign (18–28 June 2007) where model overestimates in LWc greater than 20 W m−2 and OMI-estimated aerosol optical depth (AOD) greater than 0.8 are concurrent around 20°N, 0–20°W. A model-minus-GERB LW bias of around 30 W m−2 coincides with high AOD during the period 18–21 June 2007, although differences in cloud cover also impact the model–GERB differences. Copyright © Royal Meteorological Society and Crown Copyright, 2010
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
Although dealing with pain is a vital goal to pursue, most individuals are also engaged in the pursuit of other goals. The aim of the present experiment was to investigate whether attentional bias to pain signals is inhibited when one is pursuing a concurrent salient but nonpain task goal. Attentional bias to pain signals was measured in pain-free volunteers (n=63) using a spatial cueing task with pain cues and neutral cues. The pursuit of a concurrent goal was manipulated by including additional trials in which a digit appeared at the middle of the screen. Half of the participants (goal group) were instructed to name these additional stimuli aloud. In order to increase the affective-motivational value of this non-pain-related goal, monetary reward and punishment were made contingent upon the performance of this task. Participants of the control group did not perform the additional task. As predicted, the results show attentional bias to pain signals in the control group, but not in the goal group. This indicates that attentional bias to signals of impending pain is inhibited when one is engaged in the pursuit of another salient but nonpain goal. The results of this study underscore a motivational view on attention to pain, in which the pursuit of multiple goals, including nonpain goals, is taken into account.
Resumo:
The Lincoln–Petersen estimator is one of the most popular estimators used in capture–recapture studies. It was developed for a sampling situation in which two sources independently identify members of a target population. For each of the two sources, it is determined if a unit of the target population is identified or not. This leads to a 2 × 2 table with frequencies f11, f10, f01, f00 indicating the number of units identified by both sources, by the first but not the second source, by the second but not the first source and not identified by any of the two sources, respectively. However, f00 is unobserved so that the 2 × 2 table is incomplete and the Lincoln–Petersen estimator provides an estimate for f00. In this paper, we consider a generalization of this situation for which one source provides not only a binary identification outcome but also a count outcome of how many times a unit has been identified. Using a truncated Poisson count model, truncating multiple identifications larger than two, we propose a maximum likelihood estimator of the Poisson parameter and, ultimately, of the population size. This estimator shows benefits, in comparison with Lincoln–Petersen’s, in terms of bias and efficiency. It is possible to test the homogeneity assumption that is not testable in the Lincoln–Petersen framework. The approach is applied to surveillance data on syphilis from Izmir, Turkey.