12 resultados para Multiple testing
em CentAUR: Central Archive University of Reading - UK
Resumo:
Assaying a large number of genetic markers from patients in clinical trials is now possible in order to tailor drugs with respect to efficacy. The statistical methodology for analysing such massive data sets is challenging. The most popular type of statistical analysis is to use a univariate test for each genetic marker, once all the data from a clinical study have been collected. This paper presents a sequential method for conducting an omnibus test for detecting gene-drug interactions across the genome, thus allowing informed decisions at the earliest opportunity and overcoming the multiple testing problems from conducting many univariate tests. We first propose an omnibus test for a fixed sample size. This test is based on combining F-statistics that test for an interaction between treatment and the individual single nucleotide polymorphism (SNP). As SNPs tend to be correlated, we use permutations to calculate a global p-value. We extend our omnibus test to the sequential case. In order to control the type I error rate, we propose a sequential method that uses permutations to obtain the stopping boundaries. The results of a simulation study show that the sequential permutation method is more powerful than alternative sequential methods that control the type I error rate, such as the inverse-normal method. The proposed method is flexible as we do not need to assume a mode of inheritance and can also adjust for confounding factors. An application to real clinical data illustrates that the method is computationally feasible for a large number of SNPs. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Background FFAR1 receptor is a long chain fatty acid G-protein coupled receptor which is expressed widely, but found in high density in the pancreas and central nervous system. It has been suggested that FFAR1 may play a role in insulin sensitivity, lipotoxicity and is associated with type 2 diabetes. Here we investigate the effect of three common SNPs of FFAR1 (rs2301151; rs16970264; rs1573611) on pancreatic function, BMI, body composition and plasma lipids. Methodology/Principal Findings For this enquiry we used the baseline RISCK data, which provides a cohort of overweight subjects at increased cardiometabolic risk with detailed phenotyping. The key findings were SNPs of the FFAR1 gene region were associated with differences in body composition and lipids, and the effects of the 3 SNPs combined were cumulative on BMI, body composition and total cholesterol. The effects on BMI and body fat were predominantly mediated by rs1573611 (1.06 kg/m2 higher (P = 0.009) BMI and 1.53% higher (P = 0.002) body fat per C allele). Differences in plasma lipids were also associated with the BMI-increasing allele of rs2301151 including higher total cholesterol (0.2 mmol/L per G allele, P = 0.01) and with the variant A allele of rs16970264 associated with lower total (0.3 mmol/L, P = 0.02) and LDL (0.2 mmol/L, P<0.05) cholesterol, but also with lower HDL-cholesterol (0.09 mmol/L, P<0.05) although the difference was not apparent when controlling for multiple testing. There were no statistically significant effects of the three SNPs on insulin sensitivity or beta cell function. However accumulated risk allele showed a lower beta cell function on increasing plasma fatty acids with a carbon chain greater than six. Conclusions/Significance Differences in body composition and lipids associated with common SNPs in the FFAR1 gene were apparently not mediated by changes in insulin sensitivity or beta-cell function.
Resumo:
The EC Regulation No. 1924/2006 on Nutrition and Health claims made on foods has generated considerable debate and concern among scientists and industry. At the time of writing, the European Food Safety Authority (EFSA) has not approved any probiotic claims despite numerous human trials and meta-analyses showing evidence of beneficial effects. On 29th and 30th September 2010, ten independent, academic scientists with a documented record in probiotic research, met to discuss designs for future probiotic studies to demonstrate health benefits for gut and immune function. The expert panel recommended the following: (i) always formulate a precise and concrete hypothesis, and appropriate goals and parameters before starting a trial; (ii) ensure trials have sufficient sample size, such that they are adequately powered to reach statistically significant conclusions, either supporting or rejecting the a priori hypothesis, taking into account adjustment for multiple testing (this might necessitate more than one recruitment site); (iii) ensure trials are of appropriate duration; (iv) focus on a single, primary objective and only evaluate multiple parameters when they are hypothesis-driven. The panel agreed that there was an urgent need to better define which biomarkers are considered valuable for substantiation of a health claim. As a first step, the panel welcomed the publication on the day of the meeting of EFSA's draft guidance document on immune and gut health, although it came too late for study designs and dossiers to be adjusted accordingly. New validated biomarkers need to be identified in order to properly determine the range of physiological functions influenced by probiotics. In addition, validated biomarkers reflecting risk factors for disease, are required for article 14 claims (EC Regulation No. 1924/2006). Finally, the panel concluded that consensus among scientists is needed to decide appropriate clinical endpoints for trials.
Resumo:
Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.
Resumo:
Blood lipid response to a given dietary intervention could be determined by the effect of diet, gene variants or gene–diet interactions. The objective of the present study was to investigate whether variants in presumed nutrient-sensitive genes involved in lipid metabolism modified lipid profile after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP–diet interaction effects on total cholesterol, LDL-cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect), and a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP–dietary protein interaction effect on TAG was identified for lipin 1 (LPIN1) rs4315495, with a decrease in TAG of − 0·26 mmol/l per A-allele/protein unit (95 % CI − 0·38, − 0·14, P= 0·000043). In conclusion, we investigated SNP–diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism pathways, and identified one significant interaction between LPIN1 rs4315495 and dietary protein for TAG concentration.
Resumo:
BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.
Resumo:
BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects. AIM: We conducted a case-cohort study to investigate the associations of SNPs in candidate genes with weight change during an average of 6.8 years of follow-up and to examine the potential effect modification by glycemic index (GI) and protein intake. METHODS AND FINDINGS: Participants, aged 20-60 years at baseline, came from five European countries. Cases ('weight gainers') were selected from the total eligible cohort (n = 50,293) as those with the greatest unexplained annual weight gain (n = 5,584). A random subcohort (n = 6,566) was drawn with the intention to obtain an equal number of cases and noncases (n = 5,507). We genotyped 134 SNPs that captured all common genetic variation across the 15 candidate genes; 123 met the quality control criteria. Each SNP was tested for association with the risk of being a 'weight gainer' (logistic regression models) in the case-noncase data and with weight gain (linear regression models) in the random subcohort data. After accounting for multiple testing, none of the SNPs was significantly associated with weight change. Furthermore, we observed no significant effect modification by dietary factors, except for SNP rs7180849 in the neuromedin β gene (NMB). Carriers of the minor allele had a more pronounced weight gain at a higher GI (P = 2 x 10⁻⁷). CONCLUSIONS: We found no evidence of association between SNPs in the studied hypothalamic genes with weight change. The interaction between GI and NMB SNP rs7180849 needs further confirmation.
Resumo:
We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (-25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene-nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.
Resumo:
BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.
Resumo:
BACKGROUND: Autism Spectrum Conditions (ASC) are a group of developmental conditions which affect communication, social interactions and behaviour. Mitochondrial oxidative dysfunction has been suggested as a mechanism of autism based on the results of multiple genetic association and expression studies. SLC25A12 is a gene encoding a calcium-binding carrier protein that localizes to the mitochondria and is involved in the exchange of aspartate for glutamate in the inner membrane of the mitochondria regulating the cytosolic redox state. rs2056202 SNP in this gene has previously been associated with ASC. SNPs rs6716901 and rs3765166 analysed in this study have not been previously explored in association with AS. METHODS: We genotyped three SNPs (rs2056202, rs3765166, and rs6716901) in SLC25A12 in n?=?117 individuals with Asperger syndrome (AS) and n?=?426 controls, all of Caucasian ancestry. RESULTS: rs6716901 showed significant association with AS (P?=?0.008) after correcting for multiple testing. We did not replicate the previously identified association between rs2056202 and AS in our sample. Similarly, rs3765166 (P?=?0.11) showed no significant association with AS. CONCLUSION: The present study, in combination with previous studies, provides evidence for SLC25A12 as involved in the etiology of AS. Further cellular and molecular studies are required to elucidate the role of this gene in ASC.
Resumo:
Version 1 of the Global Charcoal Database is now available for regional fire history reconstructions, data exploration, hypothesis testing, and evaluation of coupled climate–vegetation–fire model simulations. The charcoal database contains over 400 radiocarbon-dated records that document changes in charcoal abundance during the Late Quaternary. The aim of this public database is to stimulate cross-disciplinary research in fire sciences targeted at an increased understanding of the controls and impacts of natural and anthropogenic fire regimes on centennial-to-orbital timescales. We describe here the data standardization techniques for comparing multiple types of sedimentary charcoal records. Version 1 of the Global Charcoal Database has been used to characterize global and regional patterns in fire activity since the last glacial maximum. Recent studies using the charcoal database have explored the relation between climate and fire during periods of rapid climate change, including evidence of fire activity during the Younger Dryas Chronozone, and during the past two millennia.
Resumo:
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.