4 resultados para Multiple sensors
em CentAUR: Central Archive University of Reading - UK
Resumo:
Global NDVI data are routinely derived from the AVHRR, SPOT-VGT, and MODIS/Terra earth observation records for a range of applications from terrestrial vegetation monitoring to climate change modeling. This has led to a substantial interest in the harmonization of multisensor records. Most evaluations of the internal consistency and continuity of global multisensor NDVI products have focused on time-series harmonization in the spectral domain, often neglecting the spatial domain. We fill this void by applying variogram modeling (a) to evaluate the differences in spatial variability between 8-km AVHRR, 1-km SPOT-VGT, and 1-km, 500-m, and 250-m MODIS NDVI products over eight EOS (Earth Observing System) validation sites, and (b) to characterize the decay of spatial variability as a function of pixel size (i.e. data regularization) for spatially aggregated Landsat ETM+ NDVI products and a real multisensor dataset. First, we demonstrate that the conjunctive analysis of two variogram properties – the sill and the mean length scale metric – provides a robust assessment of the differences in spatial variability between multiscale NDVI products that are due to spatial (nominal pixel size, point spread function, and view angle) and non-spatial (sensor calibration, cloud clearing, atmospheric corrections, and length of multi-day compositing period) factors. Next, we show that as the nominal pixel size increases, the decay of spatial information content follows a logarithmic relationship with stronger fit value for the spatially aggregated NDVI products (R2 = 0.9321) than for the native-resolution AVHRR, SPOT-VGT, and MODIS NDVI products (R2 = 0.5064). This relationship serves as a reference for evaluation of the differences in spatial variability and length scales in multiscale datasets at native or aggregated spatial resolutions. The outcomes of this study suggest that multisensor NDVI records cannot be integrated into a long-term data record without proper consideration of all factors affecting their spatial consistency. Hence, we propose an approach for selecting the spatial resolution, at which differences in spatial variability between NDVI products from multiple sensors are minimized. This approach provides practical guidance for the harmonization of long-term multisensor datasets.
Resumo:
An evidence-led scientific case for development of a space-based polar remote sensing platform at geostationary-like (GEO-like) altitudes is developed through methods including a data user survey. Whilst a GEO platform provides a nearstatic perspective, multiple platforms are required to provide circumferential coverage. Systems for achieving GEO-like polar observation likewise require multiple platforms however the perspective is non-stationery. A key choice is between designs that provide complete polar view from a single platform at any given instant, and designs where this is obtained by compositing partial views from multiple sensors. Users foresee an increased challenge in extracting geophysical information from composite images and consider the use of non-composited images advantageous. Users also find the placement of apogee over the pole to be preferable to the alternative scenarios. Thus, a clear majority of data users find the “Taranis” orbit concept to be better than a critical inclination orbit, due to the improved perspective offered. The geophysical products that would benefit from a GEO-like polar platform are mainly estimated from radiances in the visible/near infrared and thermal parts of the electromagnetic spectrum, which is consistent with currently proven technologies from GEO. Based on the survey results, needs analysis, and current technology proven from GEO, scientific and observation requirements are developed along with two instrument concepts with eight and four channels, based on Flexible Combined Imager heritage. It is found that an operational system could, mostly likely, be deployed from an Ariane 5 ES to a 16-hour orbit, while a proof-of-concept system could be deployed from a Soyuz launch to the same orbit.
Resumo:
*** Purpose – Computer tomography (CT) for 3D reconstruction entails a huge number of coplanar fan-beam projections for each of a large number of 2D slice images, and excessive radiation intensities and dosages. For some applications its rate of throughput is also inadequate. A technique for overcoming these limitations is outlined. *** Design methodology/approach – A novel method to reconstruct 3D surface models of objects is presented, using, typically, ten, 2D projective images. These images are generated by relative motion between this set of objects and a set of ten fanbeam X-ray sources and sensors, with their viewing axes suitably distributed in 2D angular space. *** Findings – The method entails a radiation dosage several orders of magnitude lower than CT, and requires far less computational power. Experimental results are given to illustrate the capability of the technique *** Practical implications – The substantially lower cost of the method and, more particularly, its dramatically lower irradiation make it relevant to many applications precluded by current techniques *** Originality/value – The method can be used in many applications such as aircraft hold-luggage screening, 3D industrial modelling and measurement, and it should also have important applications to medical diagnosis and surgery.
Resumo:
Comprehensive surface-based retrievals of cloud optical and microphysical properties were made at Taihu, a highly polluted site in the central Yangtze Delta region, during a research campaign from May 2008 to December 2009. Cloud optical depth (COD), effective radius (Re), and liquid water path (LWP) were retrieved from measurements made with a suite of ground-based and spaceborne instruments, including an Analytical Spectral Devices spectroradiometer, a multi␣lter rotating shadowband radiometer, a multichannel microwave radiometer profiler, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. Retrievals from zenith radiance measurements capture better the temporal variation of cloud properties than do retrievals from hemispherical fluxes. Annual mean LWP, COD, and Re are 115.8 ± 90.8 g/m2, 28.5 ± 19.2, and 6.9 ± 4.2 microns. Over 90% of LWP values are less than 250 g/m2. Most of the COD values (>90%) fall between 5 and 60, and ~80% of Re values are less than 10 microns. Maximum (minimum) values of LWP and Re occur in summer (winter); COD is highest in winter and spring. Raining and nonraining clouds have signi␣cant differences in LWP, COD, and Re. Rainfall frequency is best correlated with LWP, followed by COD and Re. Cloud properties retrieved from multiple ground-based instruments are also compared with those from satellite retrievals. On average, relative to surface retrievals, mean differences of satellite retrievals in cloud LWP, COD, and Re were -33.6 g/m2 (-26.4%), -5.8 (-31.4%), and 2.9 ␣m (29.3%) for 11 MODIS-Terra overpasses and -43.3 g/m2 (-22.3%), -3.0 (-10.0%), and -1.3 ␣m (-12.0%) for 8 MODIS-Aqua overpasses, respectively. These discrepancies indicate that MODIS cloud products still suffer from large uncertainties in this region.