14 resultados para Multiple reaction monitoring
em CentAUR: Central Archive University of Reading - UK
Resumo:
The stereoselective construction of complex molecules with multiple stereogenicity in a single step represents an extremely useful, but challenging approach to complexity in chemical synthesis. The development of organocatalytic cascade processes has proven useful in these studies, but reports where four or more stereocentres are created in a single step from just two achiral reagents are rare. Herein we report the development of a novel asymmetric domino Michael-Michael reaction between nitrohex-4-enoates and nitro-olefins to generate cyclohexanes of high complexity, including one with a quaternary centre, and one with five contiguous stereocentres. This methodology provides access to a range of useful nitrocyclohexane derivatives, including a novel class of a-lycorane-like structures.
Resumo:
Stable isotopic characterization of chlorine in chlorinated aliphatic pollution is potentially very valuable for risk assessment and monitoring remediation or natural attenuation. The approach has been underused because of the complexity of analysis and the time it takes. We have developed a new method that eliminates sample preparation. Gas chromatography produces individually eluted sample peaks for analysis. The He carrier gas is mixed with Ar and introduced directly into the torch of a multicollector ICPMS. The MC-ICPMS is run at a high mass resolution of >= 10 000 to eliminate interference of mass 37 ArH with Cl. The standardization approach is similar to that for continuous flow stable isotope analysis in which sample and reference materials are measured successively. We have measured PCE relative to a laboratory TCE standard mixed with the sample. Solvent samples of 200 nmol to 1.3 mu mol ( 24- 165 mu g of Cl) were measured. The PCE gave the same value relative to the TCE as measured by the conventional method with a precision of 0.12% ( 2 x standard error) but poorer precision for the smaller samples.
Resumo:
With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.
Resumo:
The reduction of indigo (dispersed in water) to leuco-indigo (dissolved in water) is an important industrial process and investigated here for the case of glucose as an environmentally benign reducing agent. In order to quantitatively follow the formation of leuco-indigo two approaches based on (i) rotating disk voltammetry and (ii) sonovoltammetry are developed. Leuco-indigo, once formed in alkaline solution, is readily monitored at a glassy carbon electrode in the mass transport limit employing hydrodynamic voltammetry. The presence of power ultrasound further improves the leuco-indigo determination due to additional agitation and homogenization effects. While inactive at room temperature, glucose readily reduces indigo in alkaline media at 65 degrees C. In the presence of excess glucose, a surface dissolution kinetics limited process is proposed following the rate law d eta(leuco-indigo)/dt = k x c(OH-) x S-indigo where eta(leuco-indigo) is the amount of leuco-indigo formed, k = 4.1 x 10(-9) m s(-1) (at 65 degrees C, assuming spherical particles of I gm diameter) is the heterogeneous dissolution rate constant,c(OH-) is the concentration of hydroxide, and Sindigo is the reactive surface area. The activation energy for this process in aqueous 0.2 M NaOH is E-A = 64 U mol(-1) consistent with a considerable temperature effects. The redox mediator 1,8-dihydroxyanthraquinone is shown to significantly enhance the reaction rate by catalysing the electron transfer between glucose and solid indigo particles. (c) 2006 Elsevier Ltd. All fights reserved.
Resumo:
There is much interest in the bioactivity of in vivo flavonoid metabolites. We report for the first time the hierarchy of reactivity of flavonoid metabolites with peroxynitrite and characterise novel reaction products. O-Methylation of the B-ring catechol containing flavonoids epicatechin and quercetin, and O-glucuronidation of all flavonoids reduced their reactivity with peroxynitrite. The reaction of the flavanones hesperetin and naringenin and their glucuronides resulted in the formation of multiple mono-nitrated and nitrosated products. In contrast, the catechol-containing flavonoids epicatechin and quercetin yielded oxidation products which when trapped with glutathione led to the production of glutathionyl-conjugates. However, the O-methylated metabolites of epicatechin yielded both mono-and di-nitrated products and nitrosated metabolites. The 3'-O-methyl metabolite of quercetin also yielded a nitrosated species, although its counterpart 4'-O-methyl quercetin yielded only oxidation products. Such products may represent novel metabolic products in vivo and may also express cellular activity. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Studies have suggested that diets rich in polyphenols Such as flavonoids may lead to a reduced risk of gastrointestinal cancers. We demonstrate the ability of monomeric and dimeric flavanols to scavenge reactive nitrogen species derived from nitrous acid. Both epicatechin and dimer B2 (epicatechin dimer) inhibited nitrous acid-induced formation of 3-nitrotyrosine and the formation of the carcinogenic N-nitrosamine, N-nitrosodimethylamine. The reaction of monomeric and dimeric epicatechin with nitrous acid led to the formation of mono- and di-nitroso flavanols, whereas the reaction with hesperetin resulted primarily in the formation of nitrated products. Although, epicatechin was transferred across the jejunum of the small intestine yielding metabolites, its nitroso form was not absorbed. Dimer B2 but not epicatechin monomer inhibited the proliferation of, and triggered apoptosis in, Caco-2 cells. The latter was accompanied by caspase-3 activation and reductions in Akt phosphorylation, suggesting activation of apoptosis via inhibition of prosurvival signaling. Furthermore, the dinitroso derivative of dimer B2, and to a lesser extent the dinitroso-epicatechin, also induced significant toxic effects in Caco-2 cells. The inhibitory effects on cellular proliferation were paralleled by early inhibition of ERK 1/2 phosphorylation and later reductions in cyclin D I levels, indicating modulation of cell cycle regulation in Caco-2 cells. These effects highlight multiple routes in which dietary derived flavanols may exert beneficial effects in the gastrointestinal tract. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The evaluation of EU policy in the area of rural land use management often encounters problems of multiple and poorly articulated objectives. Agri-environmental policy has a range of aims, including natural resource protection, biodiversity conservation and the protection and enhancement of landscape quality. Forestry policy, in addition to production and environmental objectives, increasingly has social aims, including enhancement of human health and wellbeing, lifelong learning, and the cultural and amenity value of the landscape. Many of these aims are intangible, making them hard to define and quantify. This article describes two approaches for dealing with such situations, both of which rely on substantial participation by stakeholders. The first is the Agri-Environment Footprint Index, a form of multi-criteria participatory approach. The other, applied here to forestry, has been the development of ‘multi-purpose’ approaches to evaluation, which respond to the diverse needs of stakeholders through the use of mixed methods and a broad suite of indicators, selected through a participatory process. Each makes use of case studies and involves stakeholders in the evaluation process, thereby enhancing their commitment to the programmes and increasing their sustainability. Both also demonstrate more ‘holistic’ approaches to evaluation than the formal methods prescribed in the EU Common Monitoring and Evaluation Framework.
Resumo:
We present a study of the geographic location of lightning affecting the ionospheric sporadic-E (Es) layer over the ionospheric monitoring station at Chilton, UK. Data from the UK Met Office's Arrival Time Difference (ATD) lightning detection system were used to locate lightning strokes in the vicinity of the ionospheric monitoring station. A superposed epoch study of this data has previously revealed an enhancement in the Es layer caused by lightning within 200km of Chilton. In the current paper, we use the same data to investigate the location of the lightning strokes which have the largest effect on the Es layer above Chilton. We find that there are several locations where the effect of lightning on the ionosphere is most significant statistically, each producing different ionospheric responses. We interpret this as evidence that there is more than one mechanism combining to produce the previously observed enhancement in the ionosphere.
Resumo:
This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames – one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.
Resumo:
A new model has been developed for assessing multiple sources of nitrogen in catchments. The model (INCA) is process based and uses reaction kinetic equations to simulate the principal mechanisms operating. The model allows for plant uptake, surface and sub-surface pathways and can simulate up to six land uses simultaneously. The model can be applied to catchment as a semi-distributed simulation and has an inbuilt multi-reach structure for river systems. Sources of nitrogen can be from atmospheric deposition, from the terrestrial environment (e.g. agriculture, leakage from forest systems etc.), from urban areas or from direct discharges via sewage or intensive farm units. The model is a daily simulation model and can provide information in the form of time series at key sites, or as profiles down river systems or as statistical distributions. The process model is described and in a companion paper the model is applied to the River Tywi catchment in South Wales and the Great Ouse in Bedfordshire.
Resumo:
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.
Resumo:
The cyclocondensation reaction between rigid, electron-rich aromatic diamines and 1,1′-bis(2,4-dinitrophenyl)-4,4′-bipyridinium (Zincke) salts has been harnessed to produce a series of conjugated oligomers containing up to twelve aromatic/heterocyclic residues. These oligomers exhibit discrete, multiple redox processes accompanied by dramatic changes in electronic absorption spectra.
Resumo:
1. Bee populations and other pollinators face multiple, synergistically acting threats, which have led to population declines, loss of local species richness and pollination services, and extinctions. However, our understanding of the degree, distribution and causes of declines is patchy, in part due to inadequate monitoring systems, with the challenge of taxonomic identification posing a major logistical barrier. Pollinator conservation would benefit from a high-throughput identification pipeline. 2. We show that the metagenomic mining and resequencing of mitochondrial genomes (mitogenomics) can be applied successfully to bulk samples of wild bees. We assembled the mitogenomes of 48 UK bee species and then shotgun-sequenced total DNA extracted from 204 whole bees that had been collected in 10 pan-trap samples from farms in England and been identified morphologically to 33 species. Each sample data set was mapped against the 48 reference mitogenomes. 3. The morphological and mitogenomic data sets were highly congruent. Out of 63 total species detections in the morphological data set, the mitogenomic data set made 59 correct detections (93�7% detection rate) and detected six more species (putative false positives). Direct inspection and an analysis with species-specific primers suggested that these putative false positives were most likely due to incorrect morphological IDs. Read frequency significantly predicted species biomass frequency (R2 = 24�9%). Species lists, biomass frequencies, extrapolated species richness and community structure were recovered with less error than in a metabarcoding pipeline. 4. Mitogenomics automates the onerous task of taxonomic identification, even for cryptic species, allowing the tracking of changes in species richness and istributions. A mitogenomic pipeline should thus be able to contain costs, maintain consistently high-quality data over long time series, incorporate retrospective taxonomic revisions and provide an auditable evidence trail. Mitogenomic data sets also provide estimates of species counts within samples and thus have potential for tracking population trajectories.