25 resultados para Multiple Criteria Decision Analysis (MCDA)
em CentAUR: Central Archive University of Reading - UK
Resumo:
A range of funding schemes and policy instruments exist to effect enhancement of the landscapes and habitats of the UK. While a number of assessments of these mechanisms have been conducted, little research has been undertaken to compare both quantitatively and qualitatively their relative effectiveness across a range of criteria. It is argued that few tools are available for such a multi-faceted evaluation of effectiveness. A form of Multiple Criteria Decision Analysis (MCDA) is justified and utilized as a framework in which to evaluate the effectiveness of nine mechanisms in relation to the protection of existing areas of chalk grassland and the creation of new areas in the South Downs of England. These include established schemes, such as the Countryside Stewardship and Environmentally Sensitive Area Schemes, along with other less common mechanisms, for example, land purchase and tender schemes. The steps involved in applying an MCDA to evaluate such mechanisms are identified and the process is described. Quantitative results from the comparison of the effectiveness of different mechanisms are presented, although the broader aim of the paper is that of demonstrating the performance of MCDA as a tool for measuring the effectiveness of mechanisms aimed at landscape and habitat enhancement.
Resumo:
A universal systems design process is specified, tested in a case study and evaluated. It links English narratives to numbers using a categorical language framework with mathematical mappings taking the place of conjunctions and numbers. The framework is a ring of English narrative words between 1 (option) and 360 (capital); beyond 360 the ring cycles again to 1. English narratives are shown to correspond to the field of fractional numbers. The process can enable the development, presentation and communication of complex narrative policy information among communities of any scale, on a software implementation known as the "ecoputer". The information is more accessible and comprehensive than that in conventional decision support, because: (1) it is expressed in narrative language; and (2) the narratives are expressed as compounds of words within the framework. Hence option generation is made more effective than in conventional decision support processes including Multiple Criteria Decision Analysis, Life Cycle Assessment and Cost-Benefit Analysis.The case study is of a participatory workshop in UK bioenergy project objectives and criteria, at which attributes were elicited in environmental, economic and social systems. From the attributes, the framework was used to derive consequences at a range of levels of precision; these are compared with the project objectives and criteria as set out in the Case for Support. The design process is to be supported by a social information manipulation, storage and retrieval system for numeric and verbal narratives attached to the "ecoputer". The "ecoputer" will have an integrated verbal and numeric operating system. Novel design source code language will assist the development of narrative policy. The utility of the program, including in the transition to sustainable development and in applications at both community micro-scale and policy macro-scale, is discussed from public, stakeholder, corporate, Governmental and regulatory perspectives.
Resumo:
The purpose of this paper is to present two multi-criteria decision-making models, including an Analytic Hierarchy Process (AHP) model and an Analytic Network Process (ANP) model for the assessment of deconstruction plans and to make a comparison between the two models with an experimental case study. Deconstruction planning is under pressure to reduce operation costs, adverse environmental impacts and duration, in the meanwhile to improve productivity and safety in accordance with structure characteristics, site conditions and past experiences. To achieve these targets in deconstruction projects, there is an impending need to develop a formal procedure for contractors to select a most appropriate deconstruction plan. Because numbers of factors influence the selection of deconstruction techniques, engineers definitely need effective tools to conduct the selection process. In this regard, multi-criteria decision-making methods such as AHP have been adopted to effectively support deconstruction technique selection in previous researches. in which it has been proved that AHP method can help decision-makers to make informed decisions on deconstruction technique selection based on a sound technical framework. In this paper, the authors present the application and comparison of two decision-making models including the AHP model and the ANP model for deconstruction plan assessment. The paper concludes that both AHP and ANP are viable and capable tools for deconstruction plan assessment under the same set of evaluation criteria. However, although the ANP can measure relationship among selection criteria and their sub-criteria, which is normally ignored in the AHP, the authors also indicate that whether the ANP model can provide a more accurate result should be examined in further research.
Resumo:
The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.
Resumo:
The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.
Resumo:
An aggregated farm-level index, the Agri-environmental Footprint Index (AFI), based on multiple criteria methods and representing a harmonised approach to evaluation of EU agri-environmental schemes is described. The index uses a common framework for the design and evaluation of policy that can be customised to locally relevant agri-environmental issues and circumstances. Evaluation can be strictly policy-focused, or broader and more holistic in that context-relevant assessment criteria that are not necessarily considered in the evaluated policy can nevertheless be incorporated. The Index structure is flexible, and can respond to diverse local needs. The process of Index construction is interactive, engaging farmers and other relevant stakeholders in a transparent decision-making process that can ensure acceptance of the outcome, help to forge an improved understanding of local agri-environmental priorities and potentially increase awareness of the critical role of farmers in environmental management. The structure of the AFI facilitates post-evaluation analysis of relative performance in different dimensions of the agri-environment, permitting identification of current strengths and weaknesses, and enabling future improvement in policy design. Quantification of the environmental impact of agriculture beyond the stated aims of policy using an 'unweighted' form of the AFI has potential as the basis of an ongoing system of environmental audit within a specified agricultural context. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
People's interaction with the indoor environment plays a significant role in energy consumption in buildings. Mismatching and delaying occupants' feedback on the indoor environment to the building energy management system is the major barrier to the efficient energy management of buildings. There is an increasing trend towards the application of digital technology to support control systems in order to achieve energy efficiency in buildings. This article introduces a holistic, integrated, building energy management model called `smart sensor, optimum decision and intelligent control' (SMODIC). The model takes into account occupants' responses to the indoor environments in the control system. The model of optimal decision-making based on multiple criteria of indoor environments has been integrated into the whole system. The SMODIC model combines information technology and people centric concepts to achieve energy savings in buildings.
Resumo:
The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.
Resumo:
The recent global economic crisis is often associated with the development and pricing of mortgage-backed securities (i.e. MBSs) and underlying products (i.e. sub-prime mortgages). This work uses a rich database of MBS issues and represents the first attempt to price commercial MBSs (i.e. CMBSs) in the European market. Our results are consistent with research carried out in the US market and we find that bond-, mortgage-, real estate-related and multinational characteristics show different degrees of significance in explaining European CMBS spreads at issuance. Multiple linear regression analysis using a databank of CMBSs issued between 1997 and 2007 indicates a strong relationship with bond-related factors, followed by real estate and mortgage market conditions. We also find that multinational factors are significant, with country of issuance, collateral location and access to more liquid markets all being important in explaining the cost of secured funding for real estate companies. As floater coupon tranches tend to be riskier and exhibit higher spreads, we also estimate a model using this sub-set of data and results hold, hence reinforcing our findings. Finally, we estimate our model for both tranches A and B and find that real estate factors become relatively more important for the riskier investment products.
Resumo:
Despite the increasing use of groupware technologies in education, there is little evidence of their impact, especially within an enquiry-based learning (EBL) context. In this paper, we examine the use of a commercial standard Group Intelligence software called GroupSystems®ThinkTank. To date, ThinkTank has been adopted mainly in the USA and supports teams in generating ideas, categorising, prioritising, voting and multi-criteria decision-making and automatically generates a report at the end of each session. The software was used by students carrying out an EBL project, set by employers, for a full academic year. The criteria for assessing the impact of ThinkTank on student learning were those of creativity, participation, productivity, engagement and understanding. Data was collected throughout the year using a combination of interviews and questionnaires, and written feedback from employers. The overall findings show an increase in levels of productivity and creativity, evidence of a deeper understanding of their work but some variation in attitudes towards participation in the early stages of the project.