12 resultados para Multimedia content
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper describes a framework architecture for the automated re-purposing and efficient delivery of multimedia content stored in CMSs. It deploys specifically designed templates as well as adaptation rules based on a hierarchy of profiles to accommodate user, device and network requirements invoked as constraints in the adaptation process. The user profile provides information in accordance with the opt-in principle, while the device and network profiles provide the operational constraints such as for example resolution and bandwidth limitations. The profiles hierarchy ensures that the adaptation privileges the users' preferences. As part of the adaptation, we took into account the support for users' special needs, and therefore adopted a template-based approach that could simplify the adaptation process integrating accessibility-by-design in the template.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.
Resumo:
This article presents the results of a study that explored the human side of the multimedia experience. We propose a model that assesses quality variation from three distinct levels: the network, the media and the content levels; and from two views: the technical and the user perspective. By facilitating parameter variation at each of the quality levels and from each of the perspectives, we were able to examine their impact on user quality perception. Results show that a significant reduction in frame rate does not proportionally reduce the user's understanding of the presentation independent of technical parameters, that multimedia content type significantly impacts user information assimilation, user level of enjoyment, and user perception of quality, and that the device display type impacts user information assimilation and user perception of quality. Finally, to ensure the transfer of information, low-level abstraction (network-level) parameters, such as delay and jitter, should be adapted; to maintain the user's level of enjoyment, high-level abstraction quality parameters (content-level), such as the appropriate use of display screens, should be adapted.
Resumo:
Perceptual multimedia quality is of paramount importance to the continued take-up and proliferation of multimedia applications: users will not use and pay for applications if they are perceived to be of low quality. Whilst traditionally distributed multimedia quality has been characterised by Quality of Service (QoS) parameters, these neglect the user perspective of the issue of quality. In order to redress this shortcoming, we characterise the user multimedia perspective using the Quality of Perception (QoP) metric, which encompasses not only a user’s satisfaction with the quality of a multimedia presentation, but also his/her ability to analyse, synthesise and assimilate informational content of multimedia. In recognition of the fact that monitoring eye movements offers insights into visual perception, as well as the associated attention mechanisms and cognitive processes, this paper reports on the results of a study investigating the impact of differing multimedia presentation frame rates on user QoP and eye path data. Our results show that provision of higher frame rates, usually assumed to provide better multimedia presentation quality, do not significantly impact upon the median coordinate value of eye path data. Moreover, higher frame rates do not significantly increase level of participant information assimilation, although they do significantly improve overall user enjoyment and quality perception of the multimedia content being shown.
Resumo:
Since the advent of the internet in every day life in the 1990s, the barriers to producing, distributing and consuming multimedia data such as videos, music, ebooks, etc. have steadily been lowered for most computer users so that almost everyone with internet access can join the online communities who both produce, consume and of course also share media artefacts. Along with this trend, the violation of personal data privacy and copyright has increased with illegal file sharing being rampant across many online communities particularly for certain music genres and amongst the younger age groups. This has had a devastating effect on the traditional media distribution market; in most cases leaving the distribution companies and the content owner with huge financial losses. To prove that a copyright violation has occurred one can deploy fingerprinting mechanisms to uniquely identify the property. However this is currently based on only uni-modal approaches. In this paper we describe some of the design challenges and architectural approaches to multi-modal fingerprinting currently being examined for evaluation studies within a PhD research programme on optimisation of multi-modal fingerprinting architectures. Accordingly we outline the available modalities that are being integrated through this research programme which aims to establish the optimal architecture for multi-modal media security protection over the internet as the online distribution environment for both legal and illegal distribution of media products.
Resumo:
Media content distribution on-demand becomes more complex when performed on a mass scale involving various channels with distinct and dynamic network characteristics, and, deploying a variety of terminal devices offering a wide range of capabilities. It is practically impossible to create and prepackage various static versions of the same content to match all the varying demand parameters of clients for various contexts. In this paper we present a profiling management approach for dynamically personalised media content delivery on-demand integrated with the AXMEDIS Framework. The client profiles comprise the representation of User, Device, Network and Context of content delivery based on MPEG-21:DIA. Although the most challenging proving ground for this personalised content delivery has been the mobile testbed i.e. the distribution to mobile handsets, the framework described here can be deployed for disribution, by the AXMEDIS PnP module, through other channels e.g. satellite, Internet to a range of client terminals e.g. desktops, kiosks, IPtv and other terrminals whose baseline terminal capabilities can be made availabe by the manufacturers as is normal.
Resumo:
Fingerprinting is a well known approach for identifying multimedia data without having the original data present but what amounts to its essence or ”DNA”. Current approaches show insufficient deployment of three types of knowledge that could be brought to bear in providing a finger printing framework that remains effective, efficient and can accommodate both the whole as well as elemental protection at appropriate levels of abstraction to suit various Foci of Interest (FoI) in an image or cross media artefact. Thus our proposed framework aims to deliver selective composite fingerprinting that remains responsive to the requirements for protection of whole or parts of an image which may be of particularly interest and be especially vulnerable to attempts at rights violation. This is powerfully aided by leveraging both multi-modal information as well as a rich spectrum of collateral context knowledge including both image-level collaterals as well as the inevitably needed market intelligence knowledge such as customers’ social networks interests profiling which we can deploy as a crucial component of our Fingerprinting Collateral Knowledge. This is used in selecting the special FoIs within an image or other media content that have to be selectively and collaterally protected.
Resumo:
Distributed multimedia supports a symbiotic infotainment duality, i.e. the ability to transfer information to the user, yet also provide the user with a level of satisfaction. As multimedia is ultimately produced for the education and / or enjoyment of viewers, the user’s-perspective concerning the presentation quality is surely of equal importance as objective Quality of Service (QoS) technical parameters, to defining distributed multimedia quality. In order to extensively measure the user-perspective of multimedia video quality, we introduce an extended model of distributed multimedia quality that segregates quality into three discrete levels: the network-level, the media-level and content-level, using two distinct quality perspectives: the user-perspective and the technical-perspective. Since experimental questionnaires do not provide continuous monitoring of user attention, eye tracking was used in our study in order to provide a better understanding of the role that the human element plays in the reception, analysis and synthesis of multimedia data. Results showed that video content adaptation, results in disparity in user video eye-paths when: i) no single / obvious point of focus exists; or ii) when the point of attention changes dramatically. Accordingly, appropriate technical- and user-perspective parameter adaptation is implemented, for all quality abstractions of our model, i.e. network-level (via simulated delay and jitter), media-level (via a technical- and user-perspective manipulated region-of-interest attentive display) and content-level (via display-type and video clip-type). Our work has shown that user perception of distributed multimedia quality cannot be achieved by means of purely technical-perspective QoS parameter adaptation.
Resumo:
Our research investigates the impact that hearing has on the perception of digital video clips, with and without captions, by discussing how hearing loss, captions and deafness type affects user QoP (Quality of Perception). QoP encompasses not only a user's satisfaction with the quality of a multimedia presentation, but also their ability to analyse, synthesise and assimilate informational content of multimedia . Results show that hearing has a significant effect on participants’ ability to assimilate information, independent of video type and use of captions. It is shown that captions do not necessarily provide deaf users with a ‘greater level of information’ from video, but cause a change in user QoP, depending on deafness type, which provides a ‘greater level of context of the video’. It is also shown that post-lingual mild and moderately deaf participants predict less accurately their level of information assimilation than post-lingual profoundly deaf participants, despite residual hearing. A positive correlation was identified between level of enjoyment (LOE) and self-predicted level of information assimilation (PIA), independent of hearing level or hearing type. When this is considered in a QoP quality framework, it puts into question how the user perceives certain factors, such as ‘informative’ and ‘quality’.
Resumo:
This paper reports on the findings of a case study set up to explore the possible benefits that dyslexic learners might have when engaging in the creation of their own multimedia project. Two children with specific learning difficulties worked with the author to develop a multimedia presentation. The children developed authoring skills (such as planning and drafting, composition, revision and reflection, proof reading and presentation) and became active, motivated learners. It is believed that the open-ended character of a multimedia authoring package can encourage creative thinking and interest for content and style of presentation.
Resumo:
The fundamental principles of the teaching methodology followed for dyslexic learners evolve around the need for a multisensory approach, which would advocate repetition of learning tasks in an enjoyable way. The introduction of multimedia technologies in the field of education has supported the merging of new tools (digital camera, scanner) and techniques (sounds, graphics, animation) in a meaningful whole. Dyslexic learners are now given the opportunity to express their ideas using these alternative media and participate actively in the educational process. This paper discussed the preliminary findings of a single case study of two English monolingual dyslexic children working together to create an open-ended multimedia project on a laptop computer. The project aimed to examine whether and if the multimedia environment could enhance the dyslexic learners’ skills in composition. Analysis of the data has indicated that the technological facilities gave the children the opportunity to enhance the style and content of their work for a variety of audiences and to develop responsibilities connected to authorship.
Resumo:
We investigate the impact of captions on deaf and hearing perception of multimedia video clips. We measure perception using a parameter called Quality of Perception (QoP), which encompasses not only a user's satisfaction with multimedia clips, but also his/her ability to perceive, synthesise and analyse the informational content of such presentations. By studying perceptual diversity, it is our aim to identify trends that will help future implementation of adaptive multimedia technologies. Results show that although hearing level has a significant affect on information assimilation, the effect of captions is not significant on the objective level of information assimilated. Deaf participants predict that captions significantly improve their level of information assimilation, although no significant objective improvement was measured. The level of enjoyment is unaffected by a participant’s level of hearing or use of captions.