62 resultados para Multi-platform Xamarin Mobile-computing
em CentAUR: Central Archive University of Reading - UK
Resumo:
Pocket Data Mining (PDM) is our new term describing collaborative mining of streaming data in mobile and distributed computing environments. With sheer amounts of data streams are now available for subscription on our smart mobile phones, the potential of using this data for decision making using data stream mining techniques has now been achievable owing to the increasing power of these handheld devices. Wireless communication among these devices using Bluetooth and WiFi technologies has opened the door wide for collaborative mining among the mobile devices within the same range that are running data mining techniques targeting the same application. This paper proposes a new architecture that we have prototyped for realizing the significant applications in this area. We have proposed using mobile software agents in this application for several reasons. Most importantly the autonomic intelligent behaviour of the agent technology has been the driving force for using it in this application. Other efficiency reasons are discussed in details in this paper. Experimental results showing the feasibility of the proposed architecture are presented and discussed.
Resumo:
Mobile-to-mobile (M-to-M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M-to-M multiple-input multiple-output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double-correlated Rayleigh-and-Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three-dimensional (3D) M-to-M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal-to-noise ratio per receive antenna in closed-form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the x–y plane, angle between the x–y plane and the antenna array orientation, and degree of scattering in the x–y plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article presents a new approach to making use of electromagnetic energy from useless radio frequency (RF) signals transmitted in WSNs, with a quantitative analysis showing its feasibility. A mechanism to harvest the energy either passively or actively is proposed.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
Background The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals.Objective To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period.Design Piglets (n=14) were weaned onto either an egg-based or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary (1)H NMR metabolic profile was obtained from each animal at post mortem (11 weeks).Results Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation.ConclusionThe correlation of urinary (1)H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multi-platform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.
Resumo:
Collaborative mining of distributed data streams in a mobile computing environment is referred to as Pocket Data Mining PDM. Hoeffding trees techniques have been experimentally and analytically validated for data stream classification. In this paper, we have proposed, developed and evaluated the adoption of distributed Hoeffding trees for classifying streaming data in PDM applications. We have identified a realistic scenario in which different users equipped with smart mobile devices run a local Hoeffding tree classifier on a subset of the attributes. Thus, we have investigated the mining of vertically partitioned datasets with possible overlap of attributes, which is the more likely case. Our experimental results have validated the efficiency of our proposed model achieving promising accuracy for real deployment.
Resumo:
Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.
Cross-layer design for MIMO systems over spatially correlated and keyhole Nakagami-m fading channels
Resumo:
Cross-layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross-layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T-ARQ) is proposed for multiple-input multiple-output (MIMO) systems employing orthogonal space--time block coding (OSTBC). The performance of the proposed cross-layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami-m fading channels and keyhole Nakagami-m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper, we investigate the effects of high-power amplifier (HPA) nonlinearity and in-phase and quadrature-phase (I/Q) imbalance on the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems. Specifically, we propose a compensation method for HPA nonlinearity and I/Q imbalance together in MIMO TB systems. The performance of the MIMO TB system under study is evaluated in terms of the average symbol error probability (SEP) and system capacity, considering transmission over uncorrelated frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, such as the HPA parameters, image-leakage ratio, numbers of transmit and receive antennas, length of pilot symbols, and modulation order of phase-shift keying (PSK), on performance.
Resumo:
Owing to continuous advances in the computational power of handheld devices like smartphones and tablet computers, it has become possible to perform Big Data operations including modern data mining processes onboard these small devices. A decade of research has proved the feasibility of what has been termed as Mobile Data Mining, with a focus on one mobile device running data mining processes. However, it is not before 2010 until the authors of this book initiated the Pocket Data Mining (PDM) project exploiting the seamless communication among handheld devices performing data analysis tasks that were infeasible until recently. PDM is the process of collaboratively extracting knowledge from distributed data streams in a mobile computing environment. This book provides the reader with an in-depth treatment on this emerging area of research. Details of techniques used and thorough experimental studies are given. More importantly and exclusive to this book, the authors provide detailed practical guide on the deployment of PDM in the mobile environment. An important extension to the basic implementation of PDM dealing with concept drift is also reported. In the era of Big Data, potential applications of paramount importance offered by PDM in a variety of domains including security, business and telemedicine are discussed.
Resumo:
Observations of atmospheric conditions and processes in citiesare fundamental to understanding the interactions between the urban surface and weather/climate, improving the performance of urban weather, air quality and climate models, and providing key information for city end-users (e.g. decision-makers, stakeholders, public). In this paper, Shanghai's urban integrated meteorological observation network (SUIMON) and some examples of intended applications are introduced. Its characteristics include being: multi- purpose (e.g. forecast, research, service), multi-function (high impact weather, city climate, special end-users), multi-scale (e.g. macro/meso-, urban-, neighborhood, street canyon), multi-variable (e.g. thermal, dynamic, chemical, bio-meteorological, ecological), and multi- platform (e.g. radar, wind profiler, ground-based, satellite based, in-situ observation/ sampling). Underlying SUIMON is a data management system to facilitate exchange of data and information. The overall aim of the network is to improve coordination strategies and instruments; to identify data gaps based on science and user driven requirements; and to intelligently combine observations from a variety of platforms by using a data assimilation system that is tuned to produce the best estimate of the current state of the urban atmosphere.
Resumo:
Mobile robots provide a versatile platform for research, however they can also provide an interesting educational platform for public exhibition at museums. In general museums require exhibits that are both eye catching and exciting to the public whilst requiring a minimum of maintenance time from museum technicians. In many cases it is simply not possible to continuously change batteries and some method of supplying continous power is required. A powered flooring system is described that is capable of providing power continuously to a group of robots. Three different museum exhibit applications are described. All three robot exhibits are of a similar basic design although the exhibits are very different in appearance and behaviour. The durability and versatility of the robots also makes them extremely good candidates for long duration experiments such as those required by evolutionary robotics.