19 resultados para Multi-Attribute Rating Technique

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision strategies in multi-attribute Choice Experiments are investigated using eye-tracking. The visual attention towards, and attendance of, attributes is examined. Stated attendance is found to diverge substantively from visual attendance of attributes. However, stated and visual attendance are shown to be informative, non-overlapping sources of information about respondent utility functions when incorporated into model estimation. Eye-tracking also reveals systematic nonattendance of attributes only by a minority of respondents. Most respondents visually attend most attributes most of the time. We find no compelling evidence that the level of attention is related to respondent certainty, or that higher or lower value attributes receive more or less attention

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently researchers in the field of personalized recommendations bear little consideration on users' interest differences in resource attributes although resource attribute is usually one of the most important factors in determining user preferences. To solve this problem, the paper builds an evaluation model of user interest based on resource multi-attributes, proposes a modified Pearson-Compatibility multi-attribute group decision-making algorithm, and introduces an algorithm to solve the recommendation problem of k-neighbor similar users. Considering the characteristics of collaborative filtering recommendation, the paper addresses the issues on the preference differences of similar users, incomplete values, and advanced converge of the algorithm. Thus the paper realizes multi-attribute collaborative filtering. Finally, the effectiveness of the algorithm is proved by an experiment of collaborative recommendation among multi-users based on virtual environment. The experimental results show that the algorithm has a high accuracy on predicting target users' attribute preferences and has a strong anti-interference ability on deviation and incomplete values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, multi-attribute auctions are becoming widespread awarding mechanisms for contracts in construction, and in these auctions, criteria other than price are taken into account for ranking bidder proposals. Therefore, being the lowest-price bidder is no longer a guarantee of being awarded, thus increasing the importance of measuring any bidder’s performance when not only the first position (lowest price) matters. Modeling position performance allows a tender manager to calculate the probability curves related to the more likely positions to be occupied by any bidder who enters a competitive auction irrespective of the actual number of future participating bidders. This paper details a practical methodology based on simple statistical calculations for modeling the performance of a single bidder or a group of bidders, constituting a useful resource for analyzing one’s own success while benchmarking potential bidding competitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the global construction context, the best value or most economically advantageous tender is becoming a widespread approach for contractor selection, as an alternative to other traditional awarding criteria such as the lowest price. In these multi-attribute tenders, the owner or auctioneer solicits proposals containing both a price bid and additional technical features. Once the proposals are received, each bidder’s price bid is given an economic score according to a scoring rule, generally called an economic scoring formula (ESF) and a technical score according to pre-specified criteria. Eventually, the contract is awarded to the bidder with the highest weighted overall score (economic + technical). However, economic scoring formula selection by auctioneers is invariably and paradoxically a highly intuitive process in practice, involving few theoretical or empirical considerations, despite having been considered traditionally and mistakenly as objective, due to its mathematical nature. This paper provides a taxonomic classification of a wide variety of ESFs and abnormally low bids criteria (ALBC) gathered in several countries with different tendering approaches. Practical implications concern the optimal design of price scoring rules in construction contract tenders, as well as future analyses of the effects of the ESF and ALBC on competitive bidding behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the extent to which engineers can influence the competitive behavior of bidders in Best Value or multi-attribute construction auctions, where both the (dollar) bid and technical non-price criteria are scored according to a scoring rule. From a sample of Spanish construction auctions with a variety of bid scoring rules, it is found that bidders are influenced by the auction rules in significant and predictable ways. The bid score weighting, bid scoring formula and abnormally low bid criterion are variables likely to influence the competitiveness of bidders in terms of both their aggressive/conservative bidding and concentration/dispersion of bids. Revealing the influence of the bid scoring rules and their magnitude on bidders’ competitive behavior opens the door for the engineer to condition bidder competitive behavior in such a way as to provide the balance needed to achieve the owner’s desired strategic outcomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a high-level design method to synthesize multi-phase regular arrays. The method is based on deriving component designs using classical regular (or systolic) array synthesis techniques and composing these separately evolved component design into a unified global design. Similarity transformations ar e applied to component designs in the composition stage in order to align data ow between the phases of the computations. Three transformations are considered: rotation, re ection and translation. The technique is aimed at the design of hardware components for high-throughput embedded systems applications and we demonstrate this by deriving a multi-phase regular array for the 2-D DCT algorithm which is widely used in many vide ocommunications applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of linear responsibility analysis is used for a retrospective case study of a private industrial development consisting of an engineering factory and offices. A multi-disciplinary professional practice was used to manage and design the project. The organizational structure adopted on the project is analysed using concepts from systems theory which are included in Walker's theoretical model of the structure of building project organizations (Walker, 1981). This model proposes that the process of buildings provision can be viewed as systems and sub-systems which are differentiated form each other at decision points. Further to this, the sub-systematic analysis of the relationship between the contributors gives a quantitative assessment of the efficiency of the organizational structure used. There was a high level of satisfaction with the completed project and this is reflected by the way in which the organization structure corresponded to the model's proposition. However, the project was subject to string environmental forces which the project organization was not capable of entirely overcoming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to present two multi-criteria decision-making models, including an Analytic Hierarchy Process (AHP) model and an Analytic Network Process (ANP) model for the assessment of deconstruction plans and to make a comparison between the two models with an experimental case study. Deconstruction planning is under pressure to reduce operation costs, adverse environmental impacts and duration, in the meanwhile to improve productivity and safety in accordance with structure characteristics, site conditions and past experiences. To achieve these targets in deconstruction projects, there is an impending need to develop a formal procedure for contractors to select a most appropriate deconstruction plan. Because numbers of factors influence the selection of deconstruction techniques, engineers definitely need effective tools to conduct the selection process. In this regard, multi-criteria decision-making methods such as AHP have been adopted to effectively support deconstruction technique selection in previous researches. in which it has been proved that AHP method can help decision-makers to make informed decisions on deconstruction technique selection based on a sound technical framework. In this paper, the authors present the application and comparison of two decision-making models including the AHP model and the ANP model for deconstruction plan assessment. The paper concludes that both AHP and ANP are viable and capable tools for deconstruction plan assessment under the same set of evaluation criteria. However, although the ANP can measure relationship among selection criteria and their sub-criteria, which is normally ignored in the AHP, the authors also indicate that whether the ANP model can provide a more accurate result should be examined in further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space applications are challenged by the reliability of parallel computing systems (FPGAs) employed in space crafts due to Single-Event Upsets. The work reported in this paper aims to achieve self-managing systems which are reliable for space applications by applying autonomic computing constructs to parallel computing systems. A novel technique, 'Swarm-Array Computing' inspired by swarm robotics, and built on the foundations of autonomic and parallel computing is proposed as a path to achieve autonomy. The constitution of swarm-array computing comprising for constituents, namely the computing system, the problem / task, the swarm and the landscape is considered. Three approaches that bind these constituents together are proposed. The feasibility of one among the three proposed approaches is validated on the SeSAm multi-agent simulator and landscapes representing the computing space and problem are generated using the MATLAB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As Terabyte datasets become the norm, the focus has shifted away from our ability to produce and store ever larger amounts of data, onto its utilization. It is becoming increasingly difficult to gain meaningful insights into the data produced. Also many forms of the data we are currently producing cannot easily fit into traditional visualization methods. This paper presents a new and novel visualization technique based on the concept of a Data Forest. Our Data Forest has been designed to be used with vir tual reality (VR) as its presentation method. VR is a natural medium for investigating large datasets. Our approach can easily be adapted to be used in a variety of different ways, from a stand alone single user environment to large multi-user collaborative environments. A test application is presented using multi-dimensional data to demonstrate the concepts involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for multidimensional input datasets. In this paper, we present an application of the simulated annealing procedure to the SOM learning algorithm with the aim to obtain a fast learning and better performances in terms of quantization error. The proposed learning algorithm is called Fast Learning Self-Organized Map, and it does not affect the easiness of the basic learning algorithm of the standard SOM. The proposed learning algorithm also improves the quality of resulting maps by providing better clustering quality and topology preservation of input multi-dimensional data. Several experiments are used to compare the proposed approach with the original algorithm and some of its modification and speed-up techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider two weakly coupled systems and adopt a perturbative approach based on the Ruelle response theory to study their interaction. We propose a systematic way of parameterizing the effect of the coupling as a function of only the variables of a system of interest. Our focus is on describing the impacts of the coupling on the long term statistics rather than on the finite-time behavior. By direct calculation, we find that, at first order, the coupling can be surrogated by adding a deterministic perturbation to the autonomous dynamics of the system of interest. At second order, there are additionally two separate and very different contributions. One is a term taking into account the second-order contributions of the fluctuations in the coupling, which can be parameterized as a stochastic forcing with given spectral properties. The other one is a memory term, coupling the system of interest to its previous history, through the correlations of the second system. If these correlations are known, this effect can be implemented as a perturbation with memory on the single system. In order to treat this case, we present an extension to Ruelle's response theory able to deal with integral operators. We discuss our results in the context of other methods previously proposed for disentangling the dynamics of two coupled systems. We emphasize that our results do not rely on assuming a time scale separation, and, if such a separation exists, can be used equally well to study the statistics of the slow variables and that of the fast variables. By recursively applying the technique proposed here, we can treat the general case of multi-level systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The observed dramatic decrease in September sea ice extent (SIE) has been widely discussed in the scientific literature. Though there is qualitative agreement between observations and ensemble members of the Third Coupled Model Intercomparison Project (CMIP3), it is concerning that the observed trend (1979–2010) is not captured by any ensemble member. The potential sources of this discrepancy include: observational uncertainty, physical model limitations and vigorous natural climate variability. The latter has received less attention and is difficult to assess using the relatively short observational sea ice records. In this study multi-centennial pre-industrial control simulations with five CMIP3 climate models are used to investigate the role that the Arctic oscillation (AO), the Atlantic multi-decadal oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC) play in decadal sea ice variability. Further, we use the models to determine the impact that these sources of variability have had on SIE over both the era of satellite observation (1979–2010) and an extended observational record (1953–2010). There is little evidence of a relationship between the AO and SIE in the models. However, we find that both the AMO and AMOC indices are significantly correlated with SIE in all the models considered. Using sensitivity statistics derived from the models, assuming a linear relationship, we attribute 0.5–3.1%/decade of the 10.1%/decade decline in September SIE (1979–2010) to AMO driven variability.