70 resultados para Multi-Agenten-System
em CentAUR: Central Archive University of Reading - UK
Resumo:
We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.
Resumo:
Wireless technology based pervasive healthcare has been proposed in many applications such as disease management and accident prevention for cost saving and promoting citizen’s wellbeing. However, the emphasis so far is on the artefacts with limited attentions to guiding the development of an effective and efficient solution for pervasive healthcare. Therefore, this paper aims to propose a framework of multi-agent systems design for pervasive healthcare by adopting the concept of pervasive informatics and using the methods of organisational semiotics. The proposed multi-agent system for pervasive healthcare utilises sensory information to support healthcare professionals for providing appropriate care. The key contributions contain theoretical aspect and practical aspect. In theory, this paper articulates the information interactions between the pervasive healthcare environment and stakeholders by using the methods of organisational semiotics; in practice, the proposed framework improves the healthcare quality by providing appropriate medical attentions when and as needed. In this paper, both systems and functional architecture of the multi-agent system are elaborated with the use of wireless technologies such as RFID and wireless sensor networks. The future study will focus on the implementation of the proposed framework.
Resumo:
In domain of intelligent buildings, saving energy in buildings and increasing preferences of occupants are two important factors. These factors are the important keys for evaluating the performance of work environment. In recent years, many researchers combine these areas to create the system that can change from original to the modern work environment called intelligent work environment. Due to advance of agent technology, it has received increasing attention in the area of intelligent pervasive environments. In this paper, we review several issues in intelligent buildings, with respect to the implementation of control system for intelligent buildings via multi-agent systems. Furthermore, we present the MASBO (Multi-Agent System for Building cOntrol) that has been implemented for controlling the building facilities to reach the balancing between energy efficiency and occupant’s comfort. In addition to enhance the MASBO system, the collaboration through negotiation among agents is presented.
Resumo:
This article presents a prototype model based on a wireless sensor actuator network (WSAN) aimed at optimizing both energy consumption of environmental systems and well-being of occupants in buildings. The model is a system consisting of the following components: a wireless sensor network, `sense diaries', environmental systems such as heating, ventilation and air-conditioning systems, and a central computer. A multi-agent system (MAS) is used to derive and act on the preferences of the occupants. Each occupant is represented by a personal agent in the MAS. The sense diary is a new device designed to elicit feedback from occupants about their satisfaction with the environment. The roles of the components are: the WSAN collects data about physical parameters such as temperature and humidity from an indoor environment; the central computer processes the collected data; the sense diaries leverage trade-offs between energy consumption and well-being, in conjunction with the agent system; and the environmental systems control the indoor environment.
Resumo:
We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.
Resumo:
This study investigates the transfer of Cd and Zn from a soil amended with sewage sludge at rates up to 100 t ha(-1) through a multi-trophic system consisting of barley, the aphid Sitobion avenae and the larvae of the lacewing Chrysoperla carnae. Results show marked differences in the transfer of the two metals. Cadmium was freely accumulated in barley roots, but accumulation in the shoot was restricted to a concentration of around 0.22 mg kg(-1) (dry weight). This limited the transfer of Cd to higher trophic levels and resulted in no significant accumulation of Cd in S. avenae or in C. carnae. Zinc transfer in the system was largely unrestricted, resulting in significant accumulation in roots and shoots, in S. avenae and in C. carnae. Cadmium biomagnification occurred in lacewing pupae, with concentrations up to 3.6 times greater than in aphids. S. avenae biomagnified Zn by a factor of ca. 2.5 at low sludge amendment rates, but biomagnification decreased to a factor of 1.4 at the highest amendment rate. Biomagnification of Zn did not occur in C. carnae, but concentrations were up to 3.5 time higher than in soil. Results are discussed in light of the mechanisms regulating transfer of the two metals in the system.
Resumo:
The periodic domains formed by block copolymer melts have been heralded as potential scaffolds for arranging nanoparticles in 3d space, provided we can control the positioning of the particles. Recent experiments have located particles at the domain interfaces by grafting mixed brushes to their surfaces. Here the underlying mechanism, which involves the transformation into Janus particles, is investigated with self-consistent field theory using a new multi-coordinate-system algorithm.
Resumo:
One of the important goals of the intelligent buildings especially in commercial applications is not only to minimize the energy consumption but also to enhance the occupant’s comfort. However, most of current development in the intelligent buildings focuses on an implementation of the automatic building control systems that can support energy efficiency approach. The consideration of occupants’ preferences is not adequate. To improve occupant’s wellbeing and energy efficiency in intelligent environments, we develop four types of agent combined together to form a multi-agent system to control the intelligent buildings. Users’ preferential conflicts are discussed. Furthermore, a negotiation mechanism for conflict resolution, has been proposed in order to reach an agreement, and has been represented in syntax directed translation schemes for future implementation and testing. Keywords: conflict resolution, intelligent buildings, multi-agent systems (MAS), negotiation strategy, syntax directed translation schemes (SDTS).
Resumo:
Undeniably, anticipation plays a crucial role in cognition. By what means, to what extent, and what it achieves remain open questions. In a recent BBS target article, Clark (in press) depicts an integrative model of the brain that builds on hierarchical Bayesian models of neural processing (Rao and Ballard, 1999; Friston, 2005; Brown et al., 2011), and their most recent formulation using the free-energy principle borrowed from thermodynamics (Feldman and Friston, 2010; Friston, 2010; Friston et al., 2010). Hierarchical generative models of cognition, such as those described by Clark, presuppose the manipulation of representations and internal models of the world, in as much detail as is perceptually available. Perhaps surprisingly, Clark acknowledges the existence of a “virtual version of the sensory data” (p. 4), but with no reference to some of the historical debates that shaped cognitive science, related to the storage, manipulation, and retrieval of representations in a cognitive system (Shanahan, 1997), or accounting for the emergence of intentionality within such a system (Searle, 1980; Preston and Bishop, 2002). Instead of demonstrating how this Bayesian framework responds to these foundational questions, Clark describes the structure and the functional properties of an action-oriented, multi-level system that is meant to combine perception, learning, and experience (Niedenthal, 2007).
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.
Resumo:
This paper describes the development and first results of the “Community Integrated Assessment System” (CIAS), a unique multi-institutional modular and flexible integrated assessment system for modelling climate change. Key to this development is the supporting software infrastructure, SoftIAM. Through it, CIAS is distributed between the community of institutions which has each contributed modules to the CIAS system. At the heart of SoftIAM is the Bespoke Framework Generator (BFG) which enables flexibility in the assembly and composition of individual modules from a pool to form coupled models within CIAS, and flexibility in their deployment onto the available software and hardware resources. Such flexibility greatly enhances modellers’ ability to re-configure the CIAS coupled models to answer different questions, thus tracking evolving policy needs. It also allows rigorous testing of the robustness of IA modelling results to the use of different component modules representing the same processes (for example, the economy). Such processes are often modelled in very different ways, using different paradigms, at the participating institutions. An illustrative application to the study of the relationship between the economy and the earth’s climate system is provided.