27 resultados para Mucosal inflammation

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ulcerative colitis (UC) is characterized by impairment of the epithelial barrier and the formation of ulcer-type lesions, which result in local leaks and generalized alterations of mucosal tight junctions. Ultimately, this results in increased basal permeability. Although disruption of the epithelial barrier in the gut is a hallmark of inflammatory bowel disease and intestinal infections, it remains unclear whether barrier breakdown is an initiating event of UC or rather a consequence of an underlying inflammation, evidenced by increased production of proinflammatory cytokines. UC is less common in smokers, suggesting that the nicotine in cigarettes may ameliorate disease severity. The mechanism behind this therapeutic effect is still not fully understood, and indeed it remains unclear if nicotine is the true protective agent in cigarettes. Nicotine is metabolized in the body into a variety of metabolites and can also be degraded to form various breakdown products. It is possible these metabolites or degradation products may be the true protective or curative agents. A greater understanding of the pharmacodynamics and kinetics of nicotine in relation to the immune system and enhanced knowledge of out permeability defects in UC are required to establish the exact protective nature of nicotine and its metabolites in UC. This review suggests possible hypotheses for the protective mechanism of nicotine in UC, highlighting the relationship between gut permeability and inflammation, and indicates where in the pathogenesis of the disease nicotine may mediate its effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilayered hydrogel coatings can be developed on the surface of glass slides via layer-by-layer deposition of hydrogen-bonded interpolymer complexes formed by poly(acrylic acid) and methylcellulose. Chemical modification of the glass surface with (3-aminopropyl)triethoxysilane with subsequent layer-by-layer deposition and cross-linking of interpolymer complexes by thermal treatment allows fabrication of ultrathin hydrogel coatings, not detachable from the substrate. The thickness of these coatings is directly related to the number of deposition cycles and cross-linking conditions. An unusual dependence of the hydrogel swelling properties on the sample thickness is observed and can be interpreted by gradual transitions between two- and three-dimensional networks. The hydrogels exhibit pH-responsive swelling behaviour, achieving higher swelling degrees at pH > 6.0. These coatings can be used as model substrates to study the adhesive properties of pharmaceutical tablets and can potentially mimic the total work of adhesion observed for the detachment of mucoadhesives from porcine buccal mucosa but fail to exhibit identical detachment profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Pregnant tissues express corticotropin-releasing factor (CRF), a peptide modulating fetal and placental ACTH and cortisol secretion. These actions are modulated by the locally expressed CRF-binding protein (CRF-BP). Objective: The objective of the study was to determine whether CRF, CRF-BP, ACTH, and cortisol concentrations change in amniotic fluid and umbilical cord plasma in the presence of intraamniotic infection/inflammation (IAI) in women with spontaneous labor at term. Design: This was a cross-sectional study. Setting: The study was conducted at a tertiary referral center for obstetric care. Patients: Patients included women in active labor at term with (n = 39) and without (controls; n = 78) IAI. Main Outcome Measures: Amniotic fluid and umbilical cord plasma concentrations of CRF, CRF-BP, ACTH, and cortisol measured by RIA and immunoradiometric assays were measured. Results: In patients with IAI, amniotic fluid CRF (0.97 +/- 0.18 ng/ml) and CRF-BP (33.06 +/- 5.54 nmol/liter) concentrations were significantly (P < 0.001) higher than in controls (CRF: 0.32 +/- 0.04 ng/ml; CRF-BP: 14.69 +/- 2.79 ml). The umbilical cord plasma CRF and CRF-BP concentrations were significantly (P < 0.001 for all) higher in women with IAI than in controls (CRF: 2.96 +/- 0.35 ng/ml vs. 0.38 +/- 0.18 ng/ml; CRF-BP: 152.12 +/- 5.94 nmol/liter vs. 106.9 +/- 5.97 nmol/liter). In contrast, amniotic fluid and umbilical cord plasma ACTH and cortisol concentrations did not differ between groups. Conclusions: Amniotic fluid and umbilical cord plasma CRF and CRF-BP concentrations are increased in women with spontaneous labor at term and IAI. CRF-BP may modulate CRF actions on ACTH and cortisol secretion, playing a pivotal role in limiting the inflammatory process and thus avoiding an overactivation of the fetal/placental hypothalamus-pituitary-adrenal axis at birth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerosis, leading to cardiovascular disease, is a chronic condition involving a strong inflammatory component. There is evidence that the n-3 polyunsaturated fatty acids (PUFA) present in oily fish and fish oils protect against cardiovascular disease. While these fatty acids have well-recognised effects on plasma triacylglycerol concentrations, it is likely that they exert beneficial effects through other mechanisms in addition. A large body of evidence suggests that the n-3 PUFA have anti-inflammatory properties, some of which may be manifested in the arterial wall, either directly or indirectly, to modulate the progression of atherosclerosis. This review critically evaluates the evidence for the anti-inflammatory effects of the n-3 PUFA in cells and on pathways which have a direct influence on atherogenesis in the arterial wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing awareness that the gut microbiota and an appropriately functioning immune system play an important role in maintaining human health. Recent population statistics have highlighted some worrying trends, specifically that there is a growing burden of immunological disease in Western populations, that Western populations are ageing, and that obesity, with its strong inflammatory component, is reaching epidemic proportions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although in developing countries an apolipoprotein E4 (apoE4) genotype may offer an evolutionary advantage, as it has been shown to offer protection against certain infectious disease, in Westernised societies it is associated with increased morbidity and mortality, and represents a significant risk factor for cardiovascular disease, late-onset Alzheimer's disease and other chronic disorders. ApoE is an important modulator of many stages of lipoprotein metabolism and traditionally the increased risk was attributed to higher lipid levels in E4 carriers. However, more recent evidence demonstrates the multifunctional nature of the apoE protein and the fact that the impact of genotype on disease risk may be in large part due to an impact on oxidative status or the immunomodulatory/anti-inflammatory properties of apoE. An increasing number of studies in cell lines, targeted replacement rodents and human volunteers indicate higher oxidative stress and a more pro-inflammatory state associated with the F,4 allele. The impact of genotype on the antioxidant and immunomodulatory/anti-inflammatory properties of apoE is the focus of the current review. Furthermore, current information on the impact of environment (diet, exercise, smoking status, alcohol) on apoE genotype-phenotype associations are discussed with a view to identifying particular lifestyle strategies that could be adapted to counteract the 'at-risk' E4 genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to gain a more comprehensive understanding of the aetiology of apolipoprotein E4 genotype-cardiovascular disease (CVD) associations, the impact of the apoE genotype on the macrophage inflammatory response was examined. The murine monocyte-macrophage cell line (RAW 264.7) stably transfected to produce equal amounts of human apoE3 or apoE4 was used. Following LPS stimulation, apoE4-macrophages showed higher and lower concentrations of tumour necrosis factor alpha (pro-inflammatory) and interleukin 10 (anti-inflammatory), respectively, both at mRNA and protein levels. In addition, increased expression of heme oxygenase-1 (a stress-induced anti-inflammatory protein) was observed in the apoE4-cells. Furthermore, in apoE4-macrophages, an enhanced transactivation of the key redox sensitive transcription factor NF-kappa B was shown. Current data indicate that apoE4 macrophages have an altered inflammatory response, which may contribute to the higher CVD risk observed in apoE4 carriers. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fecal water (FW) has been shown to exert, in cultured cells, cytotoxic and genotoxic effects that have implications for colorectal cancer (CRC) risk. We have investigated a further biological activity of FW, namely, the ability to affect gap junctions in CACO2 cell monolayers as an index of mucosal barrier function, which is known to be disrupted in cancer. FW samples fi-om healthy, free-living, European subjects that were divided into two broad age groups, adult (40 +/- 9.7 yr; n = 53) and elderly (76 +/- 7.5 yr; n = 55) were tested for effects on gap junction using the transepithelial resistance (TER) assay. Overall, treatment of CACO2 cells with FW samples fi-om adults increased TER (+ 4 %), whereas FW from elderly subjects decreased TER (-5%); the difference between the two groups was significant (P < 0.05). We also measured several components of FW potentially associated with modulation of TER, namely, short-chain fatty acid (SCFA) and ammonia. SCFAs (propionic, acetic, and n-butyric) were significantly lower in the elderly population (-30%, -35%, and -21%, respectively, all P pound 0.01). We consider that FW modulation of in vitro epithelial barrier function is a potentially useful noninvasive biomarker, but it requires further validation to establish its relationship to CRC risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis Recent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes. Methods Since bifidobacteria have been reported to reduce intestinal endotoxin levels and improve mucosal barrier function, we specifically increased the gut bifidobacterial content of HF-diet-fed mice through the use of a prebiotic (oligofructose [OFS]). Results Compared with normal chow-fed control mice, HF feeding significantly reduced intestinal Gram-negative and Gram-positive bacteria including levels of bifidobacteria, a dominant member of the intestinal microbiota, which is seen as physiologically positive. As expected, HF-OFS-fed mice had totally restored quantities of bifidobacteria. HF-feeding significantly increased endotoxaemia, which was normalised to control levels in HF-OFS-treated mice. Multiple-correlation analyses showed that endotoxaemia significantly and negatively correlated with Bifidobacterium spp., but no relationship was seen between endotoxaemia and any other bacterial group. Finally, in HF-OFS-treated-mice, Bifidobacterium spp. significantly and positively correlated with improved glucose tolerance, glucose-induced insulin secretion and normalised inflammatory tone (decreased endotoxaemia, plasma and adipose tissue proinflammatory cytokines). Conclusions/interpretation Together, these findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity. Thus, it would be useful to develop specific strategies for modifying gut microbiota in favour of bifidobacteria to prevent the deleterious effect of HF-diet-induced metabolic diseases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK(1)) receptor. We investigated whether ECE-1 regulates NK(1) receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium. EXPERIMENTAL APPROACH: We examined ECE-1 expression, SP trafficking and NK(1) receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats. KEY RESULTS: HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK(1) receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization. CONCLUSIONS AND IMPLICATIONS: By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK(1) receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although principally produced by the pancreas to degrade dietary proteins in the intestine, trypsins are also expressed in the nervous system and in epithelial tissues, where they have diverse actions that could be mediated by protease-activated receptors (PARs). We examined the biological actions of human trypsin IV (or mesotrypsin) and rat p23, inhibitor-resistant forms of trypsin. The zymogens trypsinogen IV and pro-p23 were expressed in Escherichia coli and purified to apparent homogeneity. Enteropeptidase cleaved both zymogens, liberating active trypsin IV and p23, which were resistant to soybean trypsin inhibitor and aprotinin. Trypsin IV cleaved N-terminal fragments of PAR(1), PAR(2), and PAR(4) at sites that would expose the tethered ligand (PAR(1) = PAR(4) > PAR(2)). Trypsin IV increased [Ca(2+)](i) in transfected cells expressing human PAR(1) and PAR(2) with similar potencies (PAR(1), 0.5 microm; PAR(2), 0.6 microm). p23 also cleaved fragments of PAR(1) and PAR(2) and signaled to cells expressing these receptors. Trypsin IV and p23 increased [Ca(2+)](i) in rat dorsal root ganglion neurons that responded to capsaicin and which thus mediate neurogenic inflammation and nociception. Intraplantar injection of trypsin IV and p23 in mice induced edema and granulocyte infiltration, which were not observed in PAR (-/-)(1)(trypsin IV) and PAR (-/-)(2) (trypsin IV and p23) mice. Trypsin IV and p23 caused thermal hyperalgesia and mechanical allodynia and hyperalgesia in mice, and these effects were absent in PAR (-/-)(2) mice but maintained in PAR (-/-)(1) mice. Thus, trypsin IV and p23 are inhibitor-resistant trypsins that can cleave and activate PARs, causing PAR(1)- and PAR(2)-dependent inflammation and PAR(2)-dependent hyperalgesia.