3 resultados para Motor components

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perception and action are tightly linked: objects may be perceived not only in terms of visual features, but also in terms of possibilities for action. Previous studies showed that when a centrally located object has a salient graspable feature (e.g., a handle), it facilitates motor responses corresponding with the feature's position. However, such so-called affordance effects have been criticized as resulting from spatial compatibility effects, due to the visual asymmetry created by the graspable feature, irrespective of any affordances. In order to dissociate between affordance and spatial compatibility effects, we asked participants to perform a simple reaction-time task to typically graspable and non-graspable objects with similar visual features (e.g., lollipop and stop sign). Responses were measured using either electromyography (EMG) on proximal arm muscles during reaching-like movements, or with finger key-presses. In both EMG and button press measurements, participants responded faster when the object was either presented in the same location as the responding hand, or was affordable, resulting in significant and independent spatial compatibility and affordance effects, but no interaction. Furthermore, while the spatial compatibility effect was present from the earliest stages of movement preparation and throughout the different stages of movement execution, the affordance effect was restricted to the early stages of movement execution. Finally, we tested a small group of unilateral arm amputees using EMG, and found residual spatial compatibility but no affordance, suggesting that spatial compatibility effects do not necessarily rely on individuals’ available affordances. Our results show dissociation between affordance and spatial compatibility effects, and suggest that rather than evoking the specific motor action most suitable for interaction with the viewed object, graspable objects prompt the motor system in a general, body-part independent fashion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Long-term changes in synaptic plasticity require gene transcription, indicating that signals generated at the synapse must be transported to the nucleus. Synaptic activation of hippocampal neurons is known to trigger retrograde transport of transcription factor NF-κB. Transcription factors of the NF-κB family are widely expressed in the nervous system and regulate expression of several genes involved in neuroplasticity, cell survival, learning and memory. Principal Findings In this study, we examine the role of the dynein/dynactin motor complex in the cellular mechanism targeting and transporting activated NF-κB to the nucleus in response to synaptic stimulation. We demonstrate that overexpression of dynamitin, which is known to dissociate dynein from microtubules, and treatment with microtubule-disrupting drugs inhibits nuclear accumulation of NF-κB p65 and reduces NF-κB-dependent transcription activity. In this line, we show that p65 is associated with components of the dynein/dynactin complex in vivo and in vitro and that the nuclear localization sequence (NLS) within NF-κB p65 is essential for this binding. Conclusion This study shows the molecular mechanism for the retrograde transport of activated NF-κB from distant synaptic sites towards the nucleus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that alpha/beta suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between alpha/beta suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy.