5 resultados para Monophasic rectifier
em CentAUR: Central Archive University of Reading - UK
Resumo:
The extent and duration of postprandial lipaemia have been linked to risk of CHD but the influence of dietary variables on, and the relative contributions of, exogenous (chylomicron) and endogenous (VLDL) triacylglycerols to the total lipaemic response have not been comprehensively evaluated. In the present study the triacylglycerol, apolipoprotein (apo) B-48 and retinyl ester (RE) responses to three test meals of varying monounsaturated (MUFA) and saturated fatty acid (SFA) content were measured in the triacylglycerol-rich lipoprotein (TRL) fraction of plasma (r ¼ 1·006 g/ml) for 9 h after meal consumption. Fifteen healthy normolipidaemic young men consumed, on separate occasions, three test meals which were identical apart from their MUFA and SFA contents. Expressed as a percentage of total energy the MUFA/SFA contents of the meals were: (1) 12 %/17 %; (2) 17 %/12% and (3) 24 %/5 %. The contribution of the intestinally-derived lipoproteins (chylomicrons) to the lipaemic response was investigated by determining the time to reach peak concentration and the total and incremental areas under the time response curves (AUC and incremental AUC) for RE, apoB-48 and triacylglycerol in the TRL fraction. No significant differences in these measurements were observed for the three meals. However, visual comparison of the postprandial responses to the three meals suggested that as meal MUFA content increased there was a tendency for the triacylglycerol, apoB-48 and RE responses to become biphasic as opposed to the typical monophasic response seen with the 12% MUFA/17% SFA meal. Comparison of the apoB-48 and RE responses for the three test meals confirmed other workers’ findings of delayed entry of RE relative to apoB-48 in TRL. The value of the two markers in investigating dietary fat absorption and metabolism is discussed.
Resumo:
An in vitro study was conducted to investigate the effect of tannins on the extent and rate of gas and methane production, using an automated pressure evaluation system (APES). In this study three condensed tannins (CT; quebracho, grape seed and green tea tannins) and four hydrolysable tannins (HT; tara, valonea, myrabolan and chestnut tannins) were evaluated, with lucerne as a control substrate. CT and HT were characterised by matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF-MS). Tannins were added to the substrate at an effective concentration of 100 g/kg either with or without polyethylene glycol (PEG6000), and incubated for 72 h in pooled, buffered rumen liquid from four lactating dairy cows. After inoculation, fermentation bottles were immediately connected to the APES to measure total cumulative gas production (GP). During the incubation, 11 gas samples were collected from each bottle at 0, 1, 4, 7, 11, 15, 23, 30, 46, 52 and 72 h of incubation and analysed for methane. A modified Michaelis-Menten model was fitted to the methane concentration patterns and model estimates were used to calculate the total cumulative methane production (GPCH4). GP and GPCH4 curves were fitted using a modified monophasic Michaelis-Menten model. Addition of quebracho reduced GP (P=0.002), whilst the other tannins did not affect GP. Addition of PEG increased GP for quebracho (P=0.003), valonea (P=0.058) and grape seed tannins (P=0.071), suggesting that these tannins either inhibited or tended to inhibit fermentation. Addition of quebracho and grape seed tannins also reduced (P≤0.012) the maximum rate of gas production, indicating that microbial activity was affected. Quebracho, valonea, myrabolan and grape seed decreased (P≤0.003) GPCH4 and the maximum rate (0.001≤ P≤ 0.102) of CH4 production. Addition of chestnut, green tea and tara tannins did not affect total gas nor methane production. Valonea and myrabolan tannins have most promise for reducing methane production as they had only a minor impact on gas production.
Resumo:
Agonists of protease-activated receptor 2 (PAR(2)) evoke hyperexcitability of dorsal root ganglia (DRG) neurons by unknown mechanisms. We examined the cellular mechanisms underlying PAR(2)-evoked hyperexcitability of mouse colonic DRG neurons to determine their potential role in pain syndromes such as visceral hyperalgesia. Colonic DRG neurons were identified by injecting Fast Blue and DiI retrograde tracers into the mouse colon. Using immunofluorescence, we found that DiI-labelled neurons contained PAR(2) immunoreactivity, confirming the presence of receptors on colonic neurons. Whole-cell current-clamp recordings of acutely dissociated neurons demonstrated that PAR(2) activation with a brief application (3 min) of PAR(2) agonists, SLIGRL-NH(2) and trypsin, evoked sustained depolarizations (up to 60 min) which were associated with increased input resistance and a marked reduction in rheobase (50% at 30 min). In voltage clamp, SLIGRL-NH(2) markedly suppressed delayed rectifier I(K) currents (55% at 10 min), but had no effect on the transient I(A) current or TTX-resistant Na(+) currents. In whole-cell current-clamp recordings, the sustained excitability evoked by PAR(2) activation was blocked by the PKC inhibitor, calphostin, and the ERK(1/2) inhibitor PD98059. Studies of ERK(1/2) phosphorylation using confocal microscopy demonstrated that SLIGRL-NH(2) increased levels of immunoreactive pERK(1/2) in DRG neurons, particularly in proximity to the plasma membrane. Thus, activation of PAR(2) receptors on colonic nociceptive neurons causes sustained hyperexcitability that is related, at least in part, to suppression of delayed rectifier I(K) currents. Both PKC and ERK(1/2) mediate the PAR(2)-induced hyperexcitability. These studies describe a novel mechanism of sensitization of colonic nociceptive neurons that may be implicated in conditions of visceral hyperalgesia such as irritable bowel syndrome.
Resumo:
The preparation of nonaqueous microemulsions using food-acceptable components is reported. The effect of oil on the formation of microemulsions stabilized by lecithin (Epikuron 200) and containing propylene glycol as immiscible solvent was investigated. When the triglycerides were used as oil, three types of phase behavior were noted, namely, a two-phase cloudy region (occurring at low lecithin concentrations), a liquid crystalline (LC) phase (occurring at high surfactant and low oil concentrations), and a clear monophasic microemulsion region. The extent of this clear one-phase region was found to be dependent upon the molecular volume of the oil being solubilized. Large molecular volume oils, such as soybean and sunflower oils, produced a small microemulsion region, whereas the smallest molecular volume triglyceride, tributyrin, produced a large, clear monophasic region. Use of the ethyl ester, ethyl oleate, as oil produced a clear, monophasic region of a size comparable to that seen with tributyrin. Substitution of some of the propylene glycol with water greatly reduced the extent of the clear one-phase region and increased the extent of the liquid crystalline region. In contrast, ethanol enhanced the clear, monophasic region by decreasing the LC phase. Replacement of some of the lecithin with the micelle-forming nonionic surfactant Tween 80 to produce mixed lecithin/Tween 80 mixtures of weight ratios (Km) 1:2 and 1:3 did not significantly alter the phase behavior, although there was a marginal increase in the area of the two-phase, cloudy region of the phase diagram. The use of the lower phosphatidylcholine content lecithin, Epikuron 170, in place of Epikuron 200 resulted in a reduction in the LC region for all of the systems investigated. In conclusion, these studies show that it is possible to prepare one-phase, clear lecithin-based microemulsions over a wide range of compositions using components that are food-acceptable.
Resumo:
An in vitro study was conducted to investigate the effects of condensed tannins (CT) structural properties, i.e. average polymer size (or mean degree of polymerization); percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane production (CH4) and fermentation characteristics. CT were extracted from eight plants in order to obtain different CT types: black currant leaves, goat willow leaves, goat willow twigs, pine bark, red currant leaves, sainfoin plants, weeping willow catkins and white clover flowers. They were analysed for CT content and CT composition by thiolytic degradation, followed by HPLC analysis. Grass silage was used as a control substrate. Condensed tannins were added to the substrate at a concentration of 40 g/kg, with or without polyethylene glycol (+ or −PEG 6000 treatment) to inactivate tannins, and then incubated for 72 h in mixed buffered rumen fluid from three different lactating dairy cows per run. Total cumulative gas production (GP) was measured by an automated gas production system. During the incubation, 12 gas samples (10 μl) were collected from each bottle headspace at 0, 2, 4, 6, 8, 12, 24, 30, 36, 48, 56 and 72 h of incubation and analyzed for CH4. A modified Michaelis–Menten model was fitted to the CH4 concentration patterns and model estimates were used to calculate total cumulative CH4 production (GPCH4). Total cumulative gas production and GPCH4 curves were fitted using biphasic and monophasic modified Michaelis-Menten models, respectively. Addition of PEG increased GP, GPCH4, and CH4 concentration compared to the −PEG treatment. All CT types reduced GPCH4 and CH4 concentration. All CT increased the half time of GP and GPCH4. Moreover, all CT decreased the maximum rate of fermentation for GPCH4 and rate of substrate degradation. The correlation between CT structure and GPCH4 and fermentation characteristics showed that the proportion of prodelphinidins within CT had the largest effect on fermentation characteristics, followed by average 27 polymer size and percentage of cis-flavan-3-ols.