3 resultados para Moles

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detection of a tactile stimulus on one finger is impaired when a concurrent stimulus (masker) is presented on an additional finger of the same or the opposite hand. This phenomenon is known to be finger-specific at the within-hand level. However, whether this specificity is also maintained at the between-hand level is not known. In four experiments, we addressed this issue by combining a Bayesian adaptive staircase procedure (QUEST) with a two-interval forced choice (2IFC) design in order to establish threshold for detecting 200ms, 100Hz sinusoidal vibrations applied to the index or little fingertip of either hand (targets). We systematically varied the masker finger (index, middle, ring, or little finger of either hand), while controlling the spatial location of the target and masker stimuli. Detection thresholds varied consistently as a function of the masker finger when the latter was on the same hand (Experiments 1 and 2), but not when on different hands (Experiments 3 and 4). Within the hand, detection thresholds increased for masker fingers closest to the target finger (i.e., middle>ring when the target was index). Between the hands, detection thresholds were higher only when the masker was present on any finger as compared to when the target was presented in isolation. The within hand effect of masker finger is consistent with the segregation of different fingers at the early stages of somatosensory processing, from the periphery to the primary somatosensory cortex (SI). We propose that detection is finger-specific and reflects the organisation of somatosensory receptive fields in SI within, but not between the hands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ISO19156 Observations and Measurements (O&M) provides a standardised framework for organising information about the collection of information about the environment. Here we describe the implementation of a specialisation of O&M for environmental data, the Metadata Objects for Linking Environmental Sciences (MOLES3). MOLES3 provides support for organising information about data, and for user navigation around data holdings. The implementation described here, “CEDA-MOLES”, also supports data management functions for the Centre for Environmental Data Archival, CEDA. The previous iteration of MOLES (MOLES2) saw active use over five years, being replaced by CEDA-MOLES in late 2014. During that period important lessons were learnt both about the information needed, as well as how to design and maintain the necessary information systems. In this paper we review the problems encountered in MOLES2; how and why CEDA-MOLES was developed and engineered; the migration of information holdings from MOLES2 to CEDA-MOLES; and, finally, provide an early assessment of MOLES3 (as implemented in CEDA-MOLES) and its limitations. Key drivers for the MOLES3 development included the necessity for improved data provenance, for further structured information to support ISO19115 discovery metadata export (for EU INSPIRE compliance), and to provide appropriate fixed landing pages for Digital Object Identifiers (DOIs) in the presence of evolving datasets. Key lessons learned included the importance of minimising information structure in free text fields, and the necessity to support as much agility in the information infrastructure as possible without compromising on maintainability both by those using the systems internally and externally (e.g. citing in to the information infrastructure), and those responsible for the systems themselves. The migration itself needed to ensure continuity of service and traceability of archived assets.