29 resultados para Molecular spectra.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Mizushima and Venkateswarlu showed in 1953 that certain molecules have the property that excited vibrational states may possess rotational spectra even when the rotational spectrum of the ground vibrational state is forbidden by symmetry. We call such a spectrum a vibrationally induced rotational spectrum, and have made a systematic examination of the point groups which permit such behaviour. We also give formulae for the approximate line frequencies and intensities in these spectra, and discuss some of the problems involved in observing them. The spectra can only arise from degenerate vibrational states, and are of three possible types: i) symmetric top perpendicular spectra, shown by molecules belonging to the point groups Dnh, Dn and Cnh, where n is odd; (ii) symmetric top parallel spectra, shown by molecules belonging to Dnd and S2n, where n is even; and (iii) spherical top spectra, shown by molecules belonging to T or Td. Excited vibrational states of polar molecules of point groups Cnv or Cn, where n is odd, may also possess vibrationally induced perpendicular components of type (i), in addition to their ordinary parallel spectra. In addition to the above limitations on the point groups there are, in general, limitations on the symmetry species of the degenerate vibrational states.
Resumo:
The microwave spectra of oxetane (trimethylene oxide) and its three symmetrically deuterated isotopic species have been observed on a Hewlett-Packard microwave spectrometer from 26.5 to 40 GHz. For the parent species, the β-d2 and the αα′-d4 species, about 300 lines have been assigned for each molecule, and for the d6 species more than 600 lines have been assigned. The assignments range from v = 0 to v = 5 in the puckering vibration; although they are mostly Q transitions, either 3 or 4 R transitions have been observed for each vibrational state. The spectra have been interpreted using an effective rotational hamiltonian for each vibrational state, including five quartic distortion constants according to Watson's formulation, and a variable number of sextic distortion constants; in general, the lines are fitted to about ± 10 kHz. The distortion constants show an anomalous zig-zag dependence on the puckering vibrational quantum number, similar to that first observed for the rotational constants by Gwinn and coworkers. This is interpreted according to a simple modification of the standard theory of centrifugal distortion, involving the double minimum potential function in the puckering coordinate.
Resumo:
Infrared spectra of thoformaldehyde, H2CS and D2CS, were observed in the gas phase at a resolution of better than 0.1 cm−1 from 4000 to 400 cm−1 using a Nicolet FTIR system. Vibrational band origins and rotational constants were determined for ν2, ν3, ν4, and ν6 of H2CS and for ν1, ν2, ν3, ν4, and ν6 of D2CS. The ν3, ν4, and ν6 bands of H2CS were analyzed as a set of three Coriolis interacting bands, and three Coriolis constants were determined; similarly the ν4 and ν6 bands of D2CS were analyzed as a pair of interacting bands and one Coriolis constant was determined. A general harmonic force field was determined, without constraints, to fit the vibrational wavenumbers, Coriolis constants, and centrifugal distortion constants. A zero-point (rz) structure was determined from the ground-state rotational constants, and the equilibrium (re) bond lengths were estimated.
Resumo:
Rotational structure has been resolved and analyzed in the 1049-cm−1 parallel fundamental and the 1182 cm−1 perpendicular fundamental bands in the infrared spectrum of the CH3F molecule. Combination bands at 2223 cm−1 and around 2650 cm−1 have also been studied. The effective resolving power of the spectrometer was 0.25 cm−1 for all these bands. The two long-wavelength fundamentals have been analyzed in much greater detail than in previous work, and a complete analysis of the perpendicular band has been made, including the J-structure in the P and R branches of the sub-bands. Rotational constants of CH3F determined in this work and elsewhere are summarized in Table XIII of the text. Some anomalous intensity perturbations in the rotation lines of the 1182-cm−1 fundamental have been observed, and are discussed.
Resumo:
The J = 2−1 microwave spectrum of six isotopic species of HSiF3 has been observed and assigned in excited states of five of the six fundamental vibrations. The assignment is based on relative intensities, double resonance experiments, and trial anharmonic force constant calculations. Analysis of the spectra leads to experimental values for five of the constants, all three l-doubling constants qt, one Fermi resonance constant φ233, and one zeta constant. The harmonic force field has been refined to all the available data on vibration wavenumbers, centrifugal distortion constants, and zeta constants. The cubic anharmonic force field has been refined to the data on and qt constants, using two models: a valence force model with two cubic force constants for SiH and SiF stretching, and a more sophisticated model. With the help of these calculations, the following equilibrium structure has been determined: re(SiH) = 1.4468(±5) Å, re(SiF) = 1.5624(±1) Å, HSiF = 110.64(±3)°,
Resumo:
High-resolution vibration-rotation spectra of monofluoroacetylene are reported for many bands in the region 1700 to 7500 cm−1. The spectra were observed on Nicolet 7199 and Bruker IFS 120 Fourier spectrometers, with resolutions of about 0.06 and 0.003 cm−1, respectively. About 130 bands have been observed in this region, of which about 80 have been rotationally analyzed. The assignment of vibrational labels to the higher energy levels is complicated by the effects of strong Fermi resonances, and many weak localized rotational resonances are observed.
Resumo:
In this work preliminary results are reported on an extensive vibrational analysis of the molecules HCCX and DCCX with X = F and Cl, in which a number of anharmonic resonances are analysed. The importance of quartic anharmonic resonances in these molecular types is reported involving the effective constants K1244 and K1255, and these are related to the corresponding resonances in acetylene and its isotopomers. The correct analysis of Fermi resonances and quartic anharmonic resonances is important not only in reproducing the high overtone energy levels, but also in fitting the observed rotational constants, and in determining the αr constants and hence the equilibrium rotational constants. In this paper we revise our recent analysis of the equilibrium structure of HCCF in the light of these effects.
Resumo:
Vibration-rotation spectra of HOCl have been measured at a resolution of 0.05 cm−1 to determine vibration rotation constants, and 35–37 Cl isotope shifts in the vibration frequencies. The spectrum of DOCl has also been recorded, and a preliminary analysis for the band origins has been made. The vibrational frequency data and centrifugal distortion constants have been used to determine the harmonic force field in a least-squares refinement; the force field obtained also gives a good fit to data on the vibrational contributions to the inertial defect. The equilibrium rotational constants of HOCl have been obtained, and an equilibrium structure has been estimated.
Resumo:
High-resolution infrared and near-infrared spectra have been observed for more than 80 overtone bands of the HCCF molecule, including two CH stretching overtones in the visible region. Many of these have been analysed, and many more are in the course of analysis and will be reported later. All fundamentals have now been rotationally analysed and the equilibrium rotational constant determined. These data provide a testing ground for anharmonic force-field analyses, and they are discussed briefly in this connection.
Resumo:
Infra-red spectra have been recorded for silyl fluoride and silyl fluoride-d3 at a resolution of circa 0·3 cm-1. Rotational structure has been observed for parallel fundamentals in both molecules, and for all perpendicular fundamentals. In both SiH3F and SiD3F the A1 and E species deformation modes interact strongly via a Coriolis perturbation; this has been analysed, and the band origin of v5 for SiH3F is reassigned. A hybrid-orbital force field based on the experimental data is also reported.
Resumo:
Rovibrational energy levels, transition frequencies, and linestrengths are computed variationally for the sulfur hydrides D2S and HDS, using ab initio potential energy and dipole surfaces. Wave-numbers for the pure rotational transitions agree to within 0.2 cm−1 of the experimental lines. For the fundamental vibrational transitions, the band origins for D2S are 860.4, 1900.6, and 1912.0 cm−1 for ν2, ν1, and ν3, respectively, compared with the corresponding experimental values of 855.4, 1896.4, and 1910.2 cm−1. For HDS, we compute ν2 to be 1039.4 cm−1, compared with the experimental value of 1032.7 cm−1. The relative merits of local and normal mode descriptions for the overtone stretching band origins are discussed. Our results confirm the local mode nature of the H2S, D2S, and HDS system.
Resumo:
The infrared and Raman spectra of monochlorogallane and its fully deuterated isotopomer are recorded and assigned on the basis of the dimeric structures. H2Ga(μ-Cl)2GaH2 and D2Ga(μ-Cl)2GaD2, conforming to D2 symmetry. The observed frequencies are corrected for anharmonicity and fitted to a potential function in which 19 of the 33 independent force constants are refined.
Resumo:
This conference, held 14-18 September 1981, addressed many aspects of high resolution molecular spectroscopy. Measurement techniques for remotely identifying trace gases in the atmosphere were discussed. Instrumentation for highly accurate and precise measurement of molecular emissions were described. The objective of the colloquium was to bring together molecular spectroscopists working in different regions of the electromagnetic spectrum from the ultraviolet to radio frequencies. These scientists shared a common interest in high resolution gas phase spectra and their analyses. The objective was met through the presentation of about 20 invited papers and many more contributed papers.
Resumo:
An alternative synthetic approach to yield the compound 2,3,5,6,8,9,11,14-octahydrobenzo[1][ 1,4,7,10]tetraazacyclotetradecine (bz[14]N-4) is presented. The protonation constants of bz[14]N-4 and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, Pb2+ were determined in H2O at 25degreesC with ionic strength 0.10 mol dm(-3) in KNO3 and they were compared with structurally related macrocycles cyclam (1,4,8,11-tetraazacyclotetradecane) and cyclen (1,4,7,10-tetraazacyclododecane). These studies indicate that only 1 : 1 ( M : L) species are formed in solution, and the ligand exhibits a high affinity for larger ions such as Cd2+ and Pb2+. The X-ray study of [bz[14]N4H3](3+) shows that an inclusion compound with a chloride counter-anion is formed through NH...Cl hydrogen bonds. Spectroscopic data in solution ( electronic and NMR spectra) showed that the macrocycle adopts a planar arrangement upon metal complexation. Molecular mechanics calculations reveal that in spite of the presence of the benzene ring in the macrocyclic framework this ligand can encapsulate metal ions with different stereo-electronic sizes in square planar arrangements. Our results indicate that the presence of the benzene ring in the backbone of the bz[14]N-4 confers a coordination behaviour intermediate between that of cyclam and cyclen.