2 resultados para Molecular sizes

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Batch syntheses of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase were performed with the aim of understanding the reaction mechanism and the parameters which affect product characteristics and molecular size. Both activities described for dextransucrase (dextran formation and acceptor reaction) achieved synthesis whilst the hydrolytic activity of dextranase regulated the product molecular size and acceptor availability. Depending on the reaction conditions, the product oligosaccharide mixtures contained mainly sugars (up to 36%) with degrees of polymerization (DP) varying between 10 and 60 together with lower concentrations of both lower and higher molecular weight sugars. Alterations in substrate and dextranase concentrations (50-400 mg ml(-1) and 2.5-46 U ml(-1), respectively) affected the molecular weight of IMO, the reaction rate and the formation of leucrose. This permitted manipulation of the product characteristics. It was found that higher substrate and dextranase concentrations gave rise to products with lower molecular sizes and a dextransucrase:dextranase ratio of 1: 1 or 1:2 appeared to produce a polymer with a molecular weight which is desirable for prebiotic use. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative synthetic approach to yield the compound 2,3,5,6,8,9,11,14-octahydrobenzo[1][ 1,4,7,10]tetraazacyclotetradecine (bz[14]N-4) is presented. The protonation constants of bz[14]N-4 and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, Pb2+ were determined in H2O at 25degreesC with ionic strength 0.10 mol dm(-3) in KNO3 and they were compared with structurally related macrocycles cyclam (1,4,8,11-tetraazacyclotetradecane) and cyclen (1,4,7,10-tetraazacyclododecane). These studies indicate that only 1 : 1 ( M : L) species are formed in solution, and the ligand exhibits a high affinity for larger ions such as Cd2+ and Pb2+. The X-ray study of [bz[14]N4H3](3+) shows that an inclusion compound with a chloride counter-anion is formed through NH...Cl hydrogen bonds. Spectroscopic data in solution ( electronic and NMR spectra) showed that the macrocycle adopts a planar arrangement upon metal complexation. Molecular mechanics calculations reveal that in spite of the presence of the benzene ring in the macrocyclic framework this ligand can encapsulate metal ions with different stereo-electronic sizes in square planar arrangements. Our results indicate that the presence of the benzene ring in the backbone of the bz[14]N-4 confers a coordination behaviour intermediate between that of cyclam and cyclen.