6 resultados para Molecular dissociation
em CentAUR: Central Archive University of Reading - UK
Resumo:
When water is coadsorbed with oxygen at coverages above 0.25ML an intact water species is observed in high resolution X-ray photoelectron spectroscopy up to 220 K, which is significantly more stable than intact water on the clean surface. The presence of this species causes a shift in the O 1s binding energy of the pre-adsorbed oxygen, which indicates the formation of hydrogen bonds between the two adsorbates. Low coverages of oxygen induce partial dissociation and recombinative desorption in the same temperature range, which illustrates that desorption temperatures alone cannot be used to determine whether water is molecularly intact or not.
Resumo:
Analytical potential energy functions which are valid at all dissociation limits have been derived for the ground states of SO2 and O3. The procedure involves minimizing the errors between the observed vibrational spectra and spectra calculated by a variational procedure. Good agreement is obtained between the observed and calculated spectra for both molecules. Comparisons are made between anharmonic force fields, previously determined from the spectral data, and the force fields obtained by differentiating the derived analytical functions at the equilibrium configurations.
Resumo:
1 Factors influencing agonist affinity and relative efficacy have been studied for the 5-HT1A serotonin receptor using membranes of CHO cells expressing the human form of the receptor and a series of R-and S-2-(dipropylamino)tetralins (nonhydroxylated and monohydroxylated (5-OH, 6-OH, 7-OH, 8-OH) species). 2 Ligand binding studies were used to determine dissociation constants for agonist binding to the 5HT(1A) receptor: (a) K-i values for agonists were determined in competition versus the binding of the agonist [H-3]-8-OH DPAT. Competition data were all fitted best by a one-binding site model. (b) K-i values for agonists were also determined in competition versus the binding of the antagonist [H-3]-NAD-199. Competition data were all fitted best by a two-binding site model, and agonist affinities for the higher (K-h) and lower affinity (K-1) sites were determined. 3 The ability of the agonists to activate the 5-HT1A receptor was determined using stimulation of [S-35]-GTPgammaS binding. Maximal effects of agonists (E-max) and their potencies (EC50) were determined from concentration/response curves for stimulation of [S-35]-GTPgammaS binding. 4 K-1/K-h determined from ligand binding assays correlated with the relative efficacy (relative Em) of agonists determined in [S-35]-GTPgammaS binding assays. There was also a correlation between K-1/K-h and K-1/EC50 for agonists determined from ligand binding and [S-35]-GTPgammaS binding assays. 5 Simulations of agonist binding and effect data were performed using the Ternary Complex Model in order to assess the use of K-1/K-h for predicting the relative efficacy of agonists. British Journal of Pharmacology (2003) 138, 1129-1139. doi: 10. 1038/sj.bjp.705085.
A refined LEED analysis of water on Ru{0001}: an experimental test of the partial dissociation model
Resumo:
Despite a number of earlier studies which seemed to confirm molecular adsorption of water on close-packed surfaces of late transition metals, new controversy has arisen over a recent theoretical work by Feibelman, according to which partial dissociation occurs on the Ru{0001} surface leading to a mixed (H2O + OH + H) superstructure. Here, we present a refined LEED-IV analysis of the (root3 x root3)R30degrees-D2O-Ru{0001} structure, testing explicitly this new model by Feibelman. Our results favour the model proposed earlier by Held and Menzel assuming intact water molecules with almost coplanar oxygen atoms and out-of-plane hydrogen atoms atop the slightly higher oxygen atoms. The partially dissociated model with an almost identical arrangement of oxygen atoms can, however, not unambiguously be excluded, especially when the single hydrogen atoms are not present in the surface unit cell. In contrast to the earlier LEED-IV analysis, we can, however, clearly exclude a buckled geometry of oxygen atoms.
Resumo:
We use atomistic molecular dynamics simulations to probe the effects of added sodium chloride (NaCl) and sodium salicylate (NaSal) salts on the spherical-to-threadlike micelle shape transition in aqueous solutions of cetyltrimethylammonium chloride (CTAC) surfactants. Long threadlike micelles are found to be unstable and break into spherical micelles at low concentrations or NaCl, but remain stable for 20 ns above a threshold value of [NaCl] approximate to 3.0 M, which is about 2.5 times larger than the experimental salt concentration at which the transition between spherical and rodlike micelles occurs. The chloride counterions associate weakly oil the surface of the CTAC micelles with the degree of counterion dissociation decreasing slightly with increasing [NaCl] on spherical micelles, but dropping significantly on the threadlike micelles tit high [NaCl]. This effect indicates that the electrolyte ions drive the micellar shape transition by screening the electrostatic repulsions between the micellar headgroups, The aromatic salicylate counterions, on the other hand, penetrate inside the micelle with their hydrophilic groups staying in the surfactant headgroup region and the hydrophobic groups partially embedded into the hydrophobic core of the micelle. The strong association of the salicylate ions with the surfactant headgroups leads to dense packing of the surfactant molecules, which effectively reduces the surface area per surfactant, and increases intramicellar ordering of the surfactant headgroups, favoring the formation of long threadlike micelles. Simulation predictions of the geometric and electrostatic properties of the spherical and threadlike micelles are in good agreement with experiments.
Resumo:
The redox properties and reactivity of [Mo(CO)2(η3-allyl)(α-diimine)(NCS)] (α-diimine = bis(2,6-dimethylphenyl)-acenaphthenequinonediimine (2,6-xylyl-BIAN) and 2,2′-bipyridine (bpy)) were studied using cyclic voltammetry and IR/UV–Vis spectroelectrochemistry. [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN)(NCS)] was shown by X-ray crystallography to have an asymmetric (B-type) conformation. The extended aromatic system of the strong π-acceptor 2,6-xylyl-BIAN ligand stabilises the primary 1e−-reduced radical anion, [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN•−)(NCS)]−, that can be reduced further to give the solvento anion [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN)(THF)]−. The initial reduction of [Mo(CO)2(η3-allyl)(bpy)(NCS)] in THF at ambient temperature results in the formation of [Mo(CO)2(η3-allyl)(bpy)]2 by reaction of the remaining parent complex with [Mo(CO)2(η3-allyl)(bpy)]− produced by dissociation of NCS− from [Mo(CO)2(η3-allyl)(bpy•−)(NCS)]−. Further reduction of the dimer [Mo(CO)2(η3-allyl)(bpy)]2 restores [Mo(CO)2(η3-allyl)(bpy)]−. In PrCN at 183 K, [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN•−)(NCS)]− converts slowly to 2e−-reduced [Mo(CO)2(η3-allyl)(2,6-xylyl-BIAN)(PrCN)]− and free NCS−. At room temperature, the reduction path in PrCN involves mainly the dimer [Mo(CO)2(η3-allyl)(bpy)]2; however, the detailed course of the reduction within the spectroelectrochemical cell is complicated and involves a mixture of several unassigned products. Finally, it has been shown that the five-coordinate anion [Mo(CO)2(η3-allyl)(bpy)]− promotes in THF reduction of CO2 to CO and formate via the formation of the intermediate [Mo(CO)2(η3-allyl)(bpy)(O2CH)] and its subsequent reduction.