11 resultados para Molecular breeding

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Barley can be classified into three major agronomic types, based on its seasonal growth habit (SGH): spring, winter and alternative. Winter varieties require exposure to vernalization to promote subsequent flowering and are autumn-sown. Spring varieties proceed to flowering in the absence of vernalization and are sown in the spring. The ‘alternative’ (also known as ‘facultative’) SGH is only loosely defined and can be sown in autumn or spring. Here, we investigate the molecular genetic basis of alternative barley. Analysis of the major barley vernalization (VRN-H1, VRN-H2) and photoperiod (PPD-H1, PPD-H2) response genes in a collection of 386 varieties found alternative SGH to be characterized by specific allelic combinations. Spring varieties possessed spring loci at one or both of the vernalization response loci, combined with long-day non-responsive ppd-H1 alleles and wild-type alleles at the short-day photoperiod response locus, PPD-H2. Winter varieties possessed winter alleles at both vernalization loci, in combination with the mutant ppd-H2 allele conferring delayed flowering under short-day photoperiods. In contrast, all alternative varieties investigated possessed a single spring allele (either at VRN-H1 or at VRN-H2) combined with mutant ppd-H2 alleles. This allelic combination is found only in alternative types and is diagnostic for alternative SGH in the collection studied. Analysis of flowering time under controlled environment found alternative varieties flowered later than spring control lines, with the difference most pronounced under short-day photoperiods. This work provides genetic characterization of the alternative SGH phenotype, allowing precise manipulation of SGH and flowering time within breeding programmes, and provides the molecular tools for classification of all three SGH categories within national variety registration processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F-9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scarcity and stochastic nature of genetic mutations presents a significant challenge for scientists seeking to characterise de novo mutation frequency at specific loci. Such mutations can be particularly numerous during regeneration of plants from in vitro culture and can undermine the value of germplasm conservation efforts. We used cleaved amplified polymorphic sequence (CAPS) analysis to characterise new mutations amongst a clonal population of cocoa plants regenerated via a somatic embryogenesis protocol used previously for cocoa cryopreservation. Efficacy of the CAPS system for mutation detection was greatly improved after an ‘a priori’ in silico screen of reference target sequences for actual and potential restriction enzyme recognition sites using a new freely available software called Artbio. Artbio surveys known sequences for existing restriction enzyme recognition sites but also identifies all single nucleotide polymorphism (SNP) deviations from such motifs. Using this software, we performed an in silico screen of seven loci for restriction sites and their potential mutant SNP variants that were possible from 21 restriction enzymes. The four most informative locus-enzyme combinations were then used to survey the regenerant populations for de novo mutants. We characterised the pattern of point mutations and, using the outputs of Artbio, calculated the ratio of base substitution in 114 somatic embryo-derived cocoa regenerants originating from two explant genotypes. We found 49 polymorphisms, comprising 26.3% of the samples screened, with an inferred rate of 2.8 × 10−3 substitutions/screened base. This elevated rate is of a similar order of magnitude to previous reports of de novo microsatellite length mutations arising in the crop and suggests caution should be exercised when applying somatic embryogenesis for the conservation of plant germplasm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rocket is a leafy brassicaceous salad crop that encompasses two major genera (Diplotaxis and Eruca) and many different cultivars. Rocket is a rich source of antioxidants and glucosinolates, many of which are produced as secondary products by the plant in response to stress. In this paper we examined the impact of temperature and light stress on several different cultivars of wild and salad rocket. Growth habit of the plants varied in response to stress and with different genotypes, reflecting the wide geographical distribution of the plant and the different environments to which the genera have naturally adapted. Preharvest environmental stress and genotype also had an impact on how well the cultivar was able to resist postharvest senescence, indicating that breeding or selection of senescence-resistant genotypes will be possible in the future. The abundance of key phytonutrients such as carotenoids and glucosinolates are also under genetic control. As genetic resources improve for rocket it will therefore be possible to develop a molecular breeding programme specifically targeted at improving stress resistance and nutritional levels of plant secondary products. Concomitantly, it has been shown in this paper that controlled levels of abiotic stress can potentially improve the levels of chlorophyll, carotenoids and antioxidant activity in this leafy vegetable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to convert existing faba bean (Vicia faba L.) single nucleotide polymorphism (SNP) markers from cleaved amplification polymorphic sequences and SNaPshot® formats, which are expensive and time-consuming, to the more convenient KBiosciences competitive allele‐specific PCR (KASP) assay format. Out of 80 assays designed, 75 were validated, though a core set of 67 of the most robust markers is recommended for further use. The 67 best KASP SNP assays were used across two generations of single seed descent to detect unintended outcrossing and to track and quantify loss of heterozygosity, a capability that will significantly increase the efficiency and performance of pure line production and maintenance. This same set of assays was also used to examine genetic relationships between the 67 members of the partly inbred panel, and should prove useful for line identification and diversity studies in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The barley β-amylase I (Bmy1) locus encodes a starch breakdown enzyme whose kinetic properties and thermostability are critical during malt production. Studies of allelic variation at the Bmy1 locus have shown that the encoded enzyme can be commonly found in at least three distinct thermostability classes and demonstrated the nucleotide sequence variations responsible for such phenotypic differences. In order to explore the extent of sequence diversity at the Bmy1 locus in cultivated European barley, 464 varieties representing a cross-section of popular varieties grown in western Europe over the past 60 years, were genotyped for three single nucleotide polymorphisms chosen to tag the four common alleles found in the collection. One of these haplotypes, which has not been explicitly recognised in the literature as a distinct allele, was found in 95% of winter varieties in the sample. When release dates of the varieties were considered, the lowest thermostability allele (Bmy1-Sd2L) appeared to decrease in abundance over time, while the highest thermostability allele (Bmy1-Sd2H) was the rarest allele at 5.4% of the sample and was virtually confined to two-row spring varieties. Pedigree analysis was used to track transmission of particular alleles over time and highlighted issues of genetic stratification of the sample.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A deeper understanding of random markers is important if they are to be employed for a range of objectives. The sequence specific amplified polymorphism (S-SAP) technique is a powerful genetic analysis tool which exploits the high copy number of retrotransposon long terminal repeats (LTRs) in the plant genome. The distribution and inheritance of S-SAP bands in the barley genome was studied using the Steptoe × Morex (S × M) double haploid (DH) population. Six S-SAP primer combinations generated 98 polymorphic bands, and map positions were assigned to all but one band. Eight putative co-dominant loci were detected, representing 16 of the mapped markers. Thus at least 81 of the mapped S-SAP loci were dominant. The markers were distributed along all of the seven chromosomes and a tendency to cluster was observed. The distribution of S-SAP markers over the barley genome concurred with the knowledge of the high copy number of retrotransposons in plants. This experiment has demonstrated the potential for the S-SAP technique to be applied in a range of analyses such as genetic fingerprinting, marker assisted breeding, biodiversity assessment and phylogenetic analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetics of the stipule spot pigmentation (SSP) in faba bean (Vicia faba L.) was studied using four inbred lines, of which Disco/2 was zero-tannin (zt2) with colourless stipule spots, ILB938/2 was normal-tannin (ZT2) with colourless stipule spots, and both Aurora/2 and Mélodie/2 were ZT2 with coloured stipule spots. Crosses Mélodie/2 × ILB 938/2, Mélodie/2 × Disco/2, ILB 938/2 × Aurora/2 and ILB 938/2 × Disco/2 (A, B, C and D, respectively) were prepared, along with reciprocals and backcrosses, and advanced through single-seed descent. All F1 hybrid plants had pigmented stipule spots, and in the F2 generation, the segregation ratio fit 3 coloured:1 colourless in crosses A, B and C and 9:7 in cross D. In the F3 generation, the ratio fit 5:3 in crosses A and C and 25:39 in cross D, and in the F4 generation, 9:7 in cross A. SSP was linked to the zero-tannin characteristics (white flower) only in cross B. The results show that coloured stipule spot is dominant to colourless and that colouration is determined by two unlinked complementary recessive genes. We propose the symbols ssp2 for the gene associated with zt2 in Disco/2 and ssp1 for the gene not associated with tannin content in ILB938/2. The novel ssp1 locus was mapped at F5 in cross ‘A’ using Medicago truncatula-derived single-nucleotide polymorphism and was on chromosome 1 of faba bean, in a well-conserved region of M. truncatula chromosome 5 containing some candidate Myb and basic helix–loop–helix transcription factor genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pyrimidine glycosides, vicine and convicine, limit the use of faba bean (Vicia faba L.) as food and feed. A single recessive gene, vc-, is responsible for a lowered vicine–convicine concentration. The biosynthetic pathway of these closely related compounds is not known, and the nearest available markers are several cM away from vc-. Improved markers would assist breeding and help to identify candidate genes. A segregating population of 210 F5 recombinant inbred lines was developed from the cross of Mélodie/2 (low vicine–convicine) × ILB 938/2 (normal vicine–convicine), and vicine–convicine concentrations were determined twice on each line. The population was genotyped with a set of 188 SNPs. A strong, single QTL for vicine–convicine concentration was identified on chromosome I, flanked by markers 1.0 cM away on one side and 2.6 cM on the other. The interval defined by these markers in the model species Medicago truncatula includes about 340 genes, but no candidate genes were identified. Further fine mapping should lead to the identification of tightly linked markers as well as narrowing down the search for candidate regulatory or biosynthetic genes which could underlie the vc- locus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Breeding progress in barley yield in the UK is being sustained at a rate in the order of 1% per annum against a background of declining seed sales. Commercial barley breeders are largely concentrating upon the elite local gene pool but with genotypic evidence suggesting that there is still considerable variation between current recommended cultivars, even those produced as half-sibs by the same breeder. Marker Assisted Selection (MAS) protocols could be substituted for conventional selection for a number of major-gene targets but, in the majority of cases, conventional selection is more resource efficient. Results from current QTL mapping studies have not yet identified sufficiently robust and validated targets for UK barley breeders to adopt MAS to assist in the selection of complex traits such as yield and malting quality. Results from multiple population mapping amongst the elite gene pool being utilised by breeders and from association studies of elite germplasm tested as part of the UK recommended list trial process do, however, show some promise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deployment of genetic markers is of interest in crop assessment and breeding programmes, due to the potential savings in cost and time afforded. As part of the internationally recognised framework for the awarding of Plant Breeders’ Rights (PBR), new barley variety submissions are evaluated using a suite of morphological traits to ensure they are distinct, uniform and stable (DUS) in comparison to all previous submissions. Increasing knowledge of the genetic control of many of these traits provides the opportunity to assess the potential of deploying diagnostic/perfect genetic markers in place of phenotypic assessment. Here, we identify a suite of 25 genetic markers assaying for 14 DUS traits, and implement them using a single genotyping platform (KASPar). Using a panel of 169 UK barley varieties, we show that phenotypic state at three of these traits can be perfectly predicted by genotype. Predictive values for an additional nine traits ranged from 81 to 99 %. Finally, by comparison of varietal discrimination based on phenotype and genotype resulted in correlation of 0.72, indicating that deployment of molecular markers for varietal discrimination could be feasible in the near future. Due to the flexibility of the genotyping platform used, the genetic markers described here can be used in any number or combination, in-house or by outsourcing, allowing flexible deployment by users. These markers are likely to find application where tracking of specific alleles is required in breeding programmes, or for potential use within national assessment programmes for the awarding of PBRs.