16 resultados para Modified Overt Aggression Scale (MOAS)
em CentAUR: Central Archive University of Reading - UK
Resumo:
1. There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6. Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
Results of a large-scale survey of resource-poor smallholder cotton farmers in South Africa over three years conclusively show that adopters of Bt cotton have benefited in terms of higher yields, lower pesticide use, less labour for pesticide application and substantially higher gross margins per hectare. These benefits were clearly related to the technology, and not to preferential adoption by farmers who were already highly efficient. The smallest producers are shown to have benefited from adoption of the Bt variety as much as, if not more than, larger producers. Moreover, evidence from hospital records suggests a link between declining pesticide poisonings and adoption of the Bt variety.
Resumo:
There is much debate about the potential benefits (and costs) of genetically modified (GM) crop technology for developing countries. Studies have been carried out in Argentina, China, Indonesia and most recently India1 to assess the impact of Bacillus thuringiensis (Bt) cotton on farmers in those regions.
Resumo:
This paper explores some of the issues involved in the Genetic Modification (GM) debate by focusing on one crop that has been modified for pest resistance, cotton (Gossypium hirsutum), and commercially released to small-scale farmers in the Makhathini Flats, KwaZulu Natal, the Republic of South Africa. This was the first commercial release of a GM variety (Bt-cotton) in Sub-Saharan Africa, and thus provides valuable and timely insights into some of the potential advantages and disadvantages of the technology for small-scale farmers in Africa. Even though there are wider concerns regarding the vulnerability of small-scale farmers in the area, the survey results suggest that Bt-cotton generated higher yields and gross margins than non-Bt-cotton. In addition, Bt-cotton significantly reduced the use of pesticide with consequent potential benefits to human health and the environment.
Resumo:
This paper presents the results of a large-scale study designed to monitor the impact arising from the introduction of insect-resistant Bt cotton in the Makhathini Flats, Republic of South Africa. Bt cotton provides a degree of resistance to cotton bollworm complex (Lepidoptera). Data were collected on the use of insecticides (type and quantity) as well as the farm-level economics of production from over 2200 farmers in three growing seasons (1998/1999, 1999/2000 and 2000/2001). and the results are discussed within the context of environmental impact brought about by insecticide. Over the three seasons of the study it was clear that Bt cotton provided benefits in terms of higher yield and gross margin relative to farmers growing conventional (non-Bt) cotton, and the benefits were particularly apparent for the smallest producers. Bt growers also used significantly less insecticide than growers of non-Bt cotton. Once quantities of insecticide applied to Bt and non-Bt cotton were converted into a Biocide Index and an Environmental Impact Quotient (EIQ) in order to allow for differences in terms of toxicity and persistence in the environment, it was apparent that the growing of Bt had a less negative impact on the environment. While this points to beneficial impacts on agricultural sustainability there are wider concerns regarding the vulnerability of resource-poor farmers in an area with limited (as yet) marketing options for their product and options for livelihood diversification both within and outside agriculture. Cotton producers in Makhathini are vulnerable as they rely on just One company for inputs (including, credit) and for their market. While Bt cotton provides benefits it does not in itself address some of the structural limitations that farmers face. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Genetically modified (GM) crops and sustainable development remain the foci of much media attention, especially given current concerns about a global food crisis. However, whilst the latter is embraced with enthusiasm by almost all groups, GM crops generate very mixed views. Some countries have welcomed GM, but others, notably those in Europe, adopt a cautious stance. This article aims to review the contribution that GM crops can make to agricultural sustainability in the developing world. Following brief reviews of both issues and their linkages, notably the pros and cons of GM cotton as a contributory factor in sustainability, a number of case studies from resourcepoor cotton farmers in Makhathini Flats, South Africa, is presented for a six-year period. Data on expenditure, productivity and income indicate that Bacillus thuringiensis (Bt) cotton is advantageous because it reduces costs, for example, of pesticides, and increases income, and the indications are that those benefits continued over at least the six years covered by the studies. There are repercussions of the additional income in the households; debts are reduced and money is invested in children's education and in the farms. However, in the general GM debate, the results show that GM crops are not miracle products which alleviate poverty at a stroke, but nor is there evidence that they will cause the scale of environmental damage associated with indiscriminate pesticide use. Indeed, for some GM antagonists, perhaps even the majority, such debates are irrelevant – the transfer of genes between species is unnatural and unethical. For them, GM crops will never be acceptable despite the evidence and pressure to increase world food production.
Resumo:
The too diverse representation of ENSO in a coupled GCM limits one’s ability to describe future change of its properties. Several studies pointed to the key role of atmosphere feedbacks in contributing to this diversity. These feedbacks are analyzed here in two simulations of a coupled GCM that differ only by the parameterization of deep atmospheric convection and the associated clouds. Using the Kerry–Emanuel (KE) scheme in the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4; KE simulation), ENSO has about the right amplitude, whereas it is almost suppressed when using the Tiedke (TI) scheme. Quantifying both the dynamical Bjerknes feedback and the heat flux feedback in KE, TI, and the corresponding Atmospheric Model Intercomparison Project (AMIP) atmosphere-only simulations, it is shown that the suppression of ENSO in TI is due to a doubling of the damping via heat flux feedback. Because the Bjerknes positive feedback is weak in both simulations, the KE simulation exhibits the right ENSO amplitude owing to an error compensation between a too weak heat flux feedback and a too weak Bjerknes feedback. In TI, the heat flux feedback strength is closer to estimates from observations and reanalysis, leading to ENSO suppression. The shortwave heat flux and, to a lesser extent, the latent heat flux feedbacks are the dominant contributors to the change between TI and KE. The shortwave heat flux feedback differences are traced back to a modified distribution of the large-scale regimes of deep convection (negative feedback) and subsidence (positive feedback) in the east Pacific. These are further associated with the model systematic errors. It is argued that a systematic and detailed evaluation of atmosphere feedbacks during ENSO is a necessary step to fully understand its simulation in coupled GCMs.
Resumo:
Measures blocking hybridization would prevent or reduce biotic or environmental change caused by gene flow from genetically modified (GM) crops to wild relatives. The efficacy of any such measure depends on hybrid numbers within the legislative region over the life-span of the GM cultivar. We present a national assessment of hybridization between rapeseed (Brassica napus) and B. rapa from a combination of sources, including population surveys, remote sensing, pollen dispersal profiles, herbarium data, local Floras, and other floristic databases. Across the United Kingdom, we estimate that 32,000 hybrids form annually in waterside B. rapa populations, whereas the less abundant weedy populations contain 17,000 hybrids. These findings set targets for strategies to eliminate hybridization and represent the first step toward quantitative risk assessment on a national scale.
Resumo:
Results of a large-scale survey of resource-poor smallholder cotton farmers in South Africa over three years conclusively show that adopters of Bt cotton have benefited in terms of higher yields, lower pesticide use, less labour for pesticide application and substantially higher gross margins per hectare. These benefits were clearly related to the technology, and not to preferential adoption by farmers who were already highly efficient. The smallest producers are shown to have benefited from adoption of the Bt variety as much as, if not more than, larger producers. Moreover, evidence from hospital records suggests a link between declining pesticide poisonings and adoption of the Bt variety.
Resumo:
The United States (US) exports more than US$6 billion in agricultural commodities to the European Union (EU) each year, but one issue carries the potential to diminish this trade: use of biotechnology in food production. The EU has adopted more stringent policies towards biotechnology than the US. Understanding differences in European and American policies towards genetically modified (GM) foods requires a greater understanding of consumers' attitudes and preferences. This paper reports results from the first large-scale, cross-Atlantic study to analyse consumer demand for genetically modified food in a non-hypothetical market environment. We strongly reject the frequent if convenient assumption in trade theory that consumer preferences are identical across countries: the median level of compensation demanded by English and French consumers to consume a GM food is found to be more than twice that in any of the US locations. Results have important implications for trade theory, which typically focusses on differences in specialization, comparative advantage and factor endowments across countries, and for on-going trade disputes at the World Trade Organization.
Resumo:
This paper presents the results of a large-scale study designed to monitor the impact arising from the introduction of insect-resistant Bt cotton in the Makhathini Flats, Republic of South Africa. Bt cotton provides a degree of resistance to cotton bollworm complex (Lepidoptera). Data were collected on the use of insecticides (type and quantity) as well as the farm-level economics of production from over 2200 farmers in three growing seasons (1998/1999, 1999/2000 and 2000/2001). and the results are discussed within the context of environmental impact brought about by insecticide. Over the three seasons of the study it was clear that Bt cotton provided benefits in terms of higher yield and gross margin relative to farmers growing conventional (non-Bt) cotton, and the benefits were particularly apparent for the smallest producers. Bt growers also used significantly less insecticide than growers of non-Bt cotton. Once quantities of insecticide applied to Bt and non-Bt cotton were converted into a Biocide Index and an Environmental Impact Quotient (EIQ) in order to allow for differences in terms of toxicity and persistence in the environment, it was apparent that the growing of Bt had a less negative impact on the environment. While this points to beneficial impacts on agricultural sustainability there are wider concerns regarding the vulnerability of resource-poor farmers in an area with limited (as yet) marketing options for their product and options for livelihood diversification both within and outside agriculture. Cotton producers in Makhathini are vulnerable as they rely on just One company for inputs (including, credit) and for their market. While Bt cotton provides benefits it does not in itself address some of the structural limitations that farmers face. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office’s 24- member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model’s parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits “jumpiness” in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.
Resumo:
An evidence-based review of the potential impact that the introduction of genetically-modified (GM) cereal and oilseed crops could have for the UK was carried out. The inter-disciplinary research project addressed the key research questions using scenarios for the uptake, or not, of GM technologies. This was followed by an extensive literature review, stakeholder consultation and financial modelling. The world area of canola, oilseed rape (OSR) low in both erucic acid in the oil and glucosinolates in the meal, was 34M ha in 2012 of which 27% was GM; Canada is the lead producer but it is also grown in the USA, Australia and Chile. Farm level effects of adopting GM OSR include: lower production costs; higher yields and profits; and ease of farm management. Growing GM OSR instead of conventional OSR reduces both herbicide usage and environmental impact. Some 170M ha of maize was grown in the world in 2011 of which 28% was GM; the main producers are the USA, China and Brazil. Spain is the main EU producer of GM maize although it is also grown widely in Portugal. Insect resistant (IR) and herbicide tolerant (HT) are the GM maize traits currently available commercially. Farm level benefits of adopting GM maize are lower costs of production through reduced use of pesticides and higher profits. GM maize adoption results in less pesticide usage than on conventional counterpart crops leading to less residues in food and animal feed and allowing increasing diversity of bees and other pollinators. In the EU, well-tried coexistence measures for growing GM crops in the proximity of conventional crops have avoided gene flow issues. Scientific evidence so far seems to indicate that there has been no environmental damage from growing GM crops. They may possibly even be beneficial to the environment as they result in less pesticides and herbicides being applied and improved carbon sequestration from less tillage. A review of work on GM cereals relevant for the UK found input trait work on: herbicide and pathogen tolerance; abiotic stress such as from drought or salinity; and yield traits under different field conditions. For output traits, work has mainly focussed on modifying the nutritional components of cereals and in connection with various enzymes, diagnostics and vaccines. Scrutiny of applications submitted for field trial testing of GM cereals found around 9000 applications in the USA, 15 in Australia and 10 in the EU since 1996. There have also been many patent applications and granted patents for GM cereals in the USA for both input and output traits;an indication of the scale of such work is the fact that in a 6 week period in the spring of 2013, 12 patents were granted relating to GM cereals. A dynamic financial model has enabled us to better understand and examine the likely performance of Bt maize and HT OSR for the south of the UK, if cultivation is permitted in the future. It was found that for continuous growing of Bt maize and HT OSR, unless there was pest pressure for the former and weed pressure for the latter, the seed premia and likely coexistence costs for a buffer zone between other crops would reduce the financial returns for the GM crops compared with their conventional counterparts. When modelling HT OSR in a four crop rotation, it was found that gross margins increased significantly at the higher levels of such pest or weed pressure, particularly for farm businesses with larger fields where coexistence costs would be scaled down. The impact of the supply of UK-produced GM crops on the wider supply chain was examined through an extensive literature review and widespread stakeholder consultation with the feed supply chain. The animal feed sector would benefit from cheaper supplies of raw materials if GM crops were grown and, in the future, they might also benefit from crops with enhanced nutritional profile (such as having higher protein levels) becoming available. This would also be beneficial to livestock producers enabling lower production costs and higher margins. Whilst coexistence measures would result in increased costs, it is unlikely that these would cause substantial changes in the feed chain structure. Retailers were not concerned about a future increase in the amount of animal feed coming from GM crops. To conclude, we (the project team) feel that the adoption of currently available and appropriate GM crops in the UK in the years ahead would benefit farmers, consumers and the feed chain without causing environmental damage. Furthermore, unless British farmers are allowed to grow GM crops in the future, the competitiveness of farming in the UK is likely to decline relative to that globally.