9 resultados para Modifiable
em CentAUR: Central Archive University of Reading - UK
Resumo:
Purpose of review Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. Recent findings In-vitro and ex-vivo studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may exert immunosuppressive and anticancer effects through changes in lipid raft organization. In addition, gangliosides and cholesterol may modulate lipid raft organization in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth. The roles of fatty acids and gangliosides, especially in relation to lipid rafts, in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer’s disease are poorly understood and require further investigation. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are starting to emerge, and indicate compelling evidence for the growing importance of membrane microdomains in health and disease. Summary In-vitro and animal studies show that n-3 PUFAs, cholesterol, and gangliosides modulate the structure and composition of lipid rafts, potentially influencing a wide range of biological processes, including immune function, neuronal signaling, cancer cell growth, entry of pathogens through the gut barrier, and insulin resistance in metabolic disorders. The physiological, clinical, and nutritional relevance of these observations remains to be determined.
Resumo:
The structure, size, stability, and functionality of lipid rafts are still in debate, but recent techniques allowing direct visualization have characterized them in a wide range of cell types. Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. However, it is not clear whether dietary polyunsaturated fatty acids (PUFAs) are incorporated into raft lipids or whether their low affinity to cholesterol disallows this and causes phase separation from rafts and displacement of raft proteins. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. Although there is increasing evidence to suggest that membrane microdomains, and their modulation, have an impact in health and disease, it is too early to judge whether modulation of lipid rafts is responsible for the immunomodulatory effects of n-3 PUFA. In addition to dietary fatty acids, gangliosides and cholesterol may also modulate microdomains in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth by n-3 PUFA. The roles of fatty acids and gangliosides in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer's disease are poorly understood and require clarification, particularly with respect to the contribution of lipid rafts. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are only just emerging, but compelling evidence indicates the growing importance of membrane microdomains in health and disease.
Resumo:
Coronary heart disease (CHD) is the leading cause of mortality in Western societies, affecting about one third of the population before their seventieth year. Over the past decades modifiable risk factors of CHD have been identified, including smoking and diet. These factors when altered can have a significant impact on an individuals' risk of developing CHD, their overall health and quality of life. There is strong evidence suggesting that dietary intake of plant foods rich in fibre and polyphenolic compounds, effectively lowers the risk of developing CHD. However, the efficacy of these foods often appears to be greater than the sum of their recognised biologically active parts. Here we discuss the hypothesis that beneficial metabolic and vascular effects of dietary fibre and plant polyphenols are due to an up regulation of the colon-systemic metabolic axis by these compounds. Fibres and many polyphenols are converted into biologically active compounds by the colonic microbiota. This microbiota imparts great metabolic versatility and dynamism, with many of their reductive or hydrolytic activities appearing complementary to oxidative or conjugative human metabolism. Understanding these microbial activities is central to determining the role of different dietary components in preventing or beneficially impacting on the impaired lipid metabolism and vascular dysfunction that typifies CHD and type 11 diabetes. This approach lays the foundation for rational selection of health promoting foods, rational target driven design of functional foods, and provides an essential thus-far, overlooked, dynamic to our understanding of how foods recognised as "healthy" impact on the human metabonome.
Resumo:
A predominance of small, dense low-density lipoprotein (LDL) is a major component of an atherogenic lipoprotein phenotype, and a common, but modifiable, source of increased risk for coronary heart disease in the free-living population. While much of the atherogenicity of small, dense LDL is known to arise from its structural properties, the extent to which an increase in the number of small, dense LDL particles (hyper-apoprotein B) contributes to this risk of coronary heart disease is currently unknown. This study reports a method for the recruitment of free-living individuals with an atherogenic lipoprotein phenotype for a fish-oil intervention trial, and critically evaluates the relationship between LDL particle number and the predominance of small, dense LDL. In this group, volunteers were selected through local general practices on the basis of a moderately raised plasma triacylglycerol (triglyceride) level (>1.5 mmol/l) and a low concentration of high-density-lipoprotein cholesterol (<1.1 mmol/l). The screening of LDL subclasses revealed a predominance of small, dense LDL (LDL subclass pattern B) in 62% of the cohort. As expected, subjects with LDL subclass pattern B were characterized by higher plasma triacylglycerol and lower high-density lipoprotein cholesterol (<1.1 mmol/l) levels and, less predictably, by lower LDL cholesterol and apoprotein B levels (P<0.05; LDL subclass A compared with subclass B). While hyper-apoprotein B was detected in only five subjects, the relative percentage of small, dense LDL-III in subjects with subclass B showed an inverse relationship with LDL apoprotein B (r=-0.57; P<0.001), identifying a subset of individuals with plasma triacylglycerol above 2.5 mmol/l and a low concentration of LDL almost exclusively in a small and dense form. These findings indicate that a predominance of small, dense LDL and hyper-apoprotein B do not always co-exist in free-living groups. Moreover, if coronary risk increases with increasing LDL particle number, these results imply that the risk arising from a predominance of small, dense LDL may actually be reduced in certain cases when plasma triacylglycerol exceeds 2.5 mmol/l.
Resumo:
An obese-type human microbiota with an increased Firmicutes:Bacteroidetes ratio has been described that may link the gut microbiome with obesity and metabolic syndrome (MetS) development. Dietary fat and carbohydrate are modifiable risk factors that may impact on MetS by altering the human microbiome composition. We determined the effect of the amount and type of dietary fat and carbohydrate on faecal bacteria and short chain fatty acid (SCFA) concentrations in people ‘at risk’ of MetS.
Resumo:
Public health strategies for reducing the risk of coronary heart disease have focused on lowering plasma lipids, particularly cholesterol levels, with recent studies also highlighting triacylglycerol (TAG) as an important modifiable risk factor. One approach is to supplement the diet with probiotics, prebiotics or synbiotics. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Putative health benefits include improved resistance to gastrointestinal infections, reduction in lipid levels and stimulation of the immune system. Prebiotics are selectively fermented dietary components that are aimed at improving host health through selective fermentation by the gut microbiota, such as bifidobacteria and lactobacilli. Animal studies have shown prebiotics to markedly reduce circulating TAG and to a lesser extent cholesterol concentrations, with favourable but inconsistent findings with respect to changes in lipid levels in human studies. Here we provide an overview of the effects, and possible mechanisms, of probiotics, prebiotics and synbiotics (combination of a probiotic and prebiotic) on circulating lipeamia in humans.
Resumo:
CVD are the leading cause of death worldwide. Hypertension, a major controllable risk factor of CVD, is intimately associated with vascular dysfunction, a defect which is also now recognised to be a major, modifiable risk factor for the development of CVD. The purpose of the present review was to critically evaluate the evidence for the effects of milk proteins and their associated peptides on blood pressure (BP) and vascular dysfunction. After a detailed literature search, the number of human trials evaluating the antihypertensive effects of casein-derived peptides (excluding isoleucine-proline-proline and valine-proline-proline) was found to be limited; the studies were preliminary with substantial methodological limitations. Likewise, the data from human trials that examined the effects of whey protein and peptides were also scarce and inconsistent. To date, only one study has conducted a comparative investigation on the relative effects of the two main intact milk proteins on BP and vascular function. While both milk proteins were shown to reduce BP, only whey protein improved measures of arterial stiffness. In contrast, a growing number of human trials have produced evidence to support beneficial effects of both milk proteins and peptides on vascular health. However, comparison of the relative outcomes from these trials is difficult owing to variation in the forms of assessment and measures of vascular function. In conclusion, there is an accumulating body of evidence to support positive effects of milk proteins in improving and/or maintaining cardiovascular health. However, the variable quality of the studies that produced this evidence, and the lack of robust, randomised controlled intervention trials, undermines the formulation of firm conclusions on the potential benefits of milk proteins and peptides on vascular health.
Resumo:
Cardiovascular disease (CVD) prevalence at a global level is predicted to increase substantially over the next decade due to the increasing ageing population and incidence of obesity. Hence, there is an urgent requirement to focus on modifiable contributors to CVD risk, including a high dietary intake of saturated fatty acids (SFA). As an important source of SFA in the UK diet, milk and dairy products are often targeted for SFA reduction. The current paper acknowledges that milk is a complex food and that simply focusing on the link between SFA and CVD risk overlooks the other beneficial nutrients of dairy foods. The body of existing prospective evidence exploring the impact of milk and dairy consumption on risk factors for CVD is reviewed. The current paper highlights that high milk consumption may be beneficial to cardiovascular health, while illustrating that the evidence is less clear for cheese and butter intake. The option of manipulating the fatty acid profile of ruminant milk is discussed as a potential dietary strategy for lowering SFA intake at a population level. The review highlights that there is a necessity to perform more well-controlled human intervention-based research that provides a more holistic evaluation of fat-reduced and fat-modified dairy consumption on CVD risk factors including vascular function, arterial stiffness, postprandial lipaemia and markers of inflammation. Additionally, further research is required to investigate the impact of different dairy products and the effect of the specific food matrix on CVD development.
Resumo:
Background 29 autoimmune diseases, including Rheumatoid Arthritis, gout, Crohn’s Disease, and Systematic Lupus Erythematosus affect 7.6-9.4% of the population. While effective therapy is available, many patients do not follow treatment or use medications as directed. Digital health and Web 2.0 interventions have demonstrated much promise in increasing medication and treatment adherence, but to date many Internet tools have proven disappointing. In fact, most digital interventions continue to suffer from high attrition in patient populations, are burdensome for healthcare professionals, and have relatively short life spans. Objective Digital health tools have traditionally centered on the transformation of existing interventions (such as diaries, trackers, stage-based or cognitive behavioral therapy programs, coupons, or symptom checklists) to electronic format. Advanced digital interventions have also incorporated attributes of Web 2.0 such as social networking, text messaging, and the use of video. Despite these efforts, there has not been little measurable impact in non-adherence for illnesses that require medical interventions, and research must look to other strategies or development methodologies. As a first step in investigating the feasibility of developing such a tool, the objective of the current study is to systematically rate factors of non-adherence that have been reported in past research studies. Methods Grounded Theory, recognized as a rigorous method that facilitates the emergence of new themes through systematic analysis, data collection and coding, was used to analyze quantitative, qualitative and mixed method studies addressing the following autoimmune diseases: Rheumatoid Arthritis, gout, Crohn’s Disease, Systematic Lupus Erythematosus, and inflammatory bowel disease. Studies were only included if they contained primary data addressing the relationship with non-adherence. Results Out of the 27 studies, four non-modifiable and 11 modifiable risk factors were discovered. Over one third of articles identified the following risk factors as common contributors to medication non-adherence (percent of studies reporting): patients not understanding treatment (44%), side effects (41%), age (37%), dose regimen (33%), and perceived medication ineffectiveness (33%). An unanticipated finding that emerged was the need for risk stratification tools (81%) with patient-centric approaches (67%). Conclusions This study systematically identifies and categorizes medication non-adherence risk factors in select autoimmune diseases. Findings indicate that patients understanding of their disease and the role of medication are paramount. An unexpected finding was that the majority of research articles called for the creation of tailored, patient-centric interventions that dispel personal misconceptions about disease, pharmacotherapy, and how the body responds to treatment. To our knowledge, these interventions do not yet exist in digital format. Rather than adopting a systems level approach, digital health programs should focus on cohorts with heterogeneous needs, and develop tailored interventions based on individual non-adherence patterns.