152 resultados para Model of semantic fields

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of an Artificial Neural Network model of UK domestic appliance energy consumption is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 households during the summer of 2010. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with backpropagation training and has a12:10:24architecture.Model outputs include appliance load profiles which can be applied to the fields of energy planning (micro renewables and smart grids), building simulation tools and energy policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a combined engineering and statistical Artificial Neural Network model of UK domestic appliance load profiles is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 suburban households and 46 rural households during the summer of 2010 and2011 respectively. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with back propagation training which has a 12:10:24 architecture. Model outputs include appliance load profiles which can be applied to the fields of energy planning (microrenewables and smart grids), building simulation tools and energy policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recall in many types of verbal memory task is reliably disrupted by the presence of auditory distracters, with verbal distracters frequently proving the most disruptive (Beaman, 2005). A multinomial processing tree model (Schweickert, 1993) is applied to the effects on free recall of background speech from a known or an unknown language. The model reproduces the free recall curve and the impact on memory of verbal distracters for which a lexical entry exists (i.e., verbal items from a known language). The effects of semantic relatedness of distracters within a language is found to depend upon a redintegrative factor thought to reflect the contribution of the speech-production system. The differential impacts of known and unknown languages cannot be accounted for in this way, but the same effects of distraction are observed amongst bilinguals, regardless of distracter-language.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An updated empirical approach is proposed for specifying coexistence requirements for genetically modified (GM) maize (Zea mays L.) production to ensure compliance with the 0.9% labeling threshold for food and feed in the European Union. The model improves on a previously published (Gustafson et al., 2006) empirical model by adding recent data sources to supplement the original database and including the following additional cases: (i) more than one GM maize source field adjacent to the conventional or organic field, (ii) the possibility of so-called “stacked” varieties with more than one GM trait, and (iii) lower pollen shed in the non-GM receptor field. These additional factors lead to the possibility for somewhat wider combinations of isolation distance and border rows than required in the original version of the empirical model. For instance, in the very conservative case of a 1-ha square non-GM maize field surrounded on all four sides by homozygous GM maize with 12 m isolation (the effective isolation distance for a single GM field), non-GM border rows of 12 m are required to be 95% confident of gene flow less than 0.9% in the non-GM field (with adventitious presence of 0.3%). Stacked traits of higher GM mass fraction and receptor fields of lower pollen shed would require a greater number of border rows to comply with the 0.9% threshold, and an updated extension to the model is provided to quantify these effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Plaut, McClelland, Seidenberg and Patterson (1996) connectionist model of reading was evaluated at two points early in its training against reading data collected from British children on two occasions during their first year of literacy instruction. First, the network’s non-word reading was poor relative to word reading when compared with the children. Second, the network made more non-lexical than lexical errors, the opposite pattern to the children. Three adaptations were made to the training of the network to bring it closer to the learning environment of a child: an incremental training regime was adopted; the network was trained on grapheme– phoneme correspondences; and a training corpus based on words found in children’s early reading materials was used. The modifications caused a sharp improvement in non-word reading, relative to word reading, resulting in a near perfect match to the children’s data on this measure. The modified network, however, continued to make predominantly non-lexical errors, although evidence from a small-scale implementation of the full triangle framework suggests that this limitation stems from the lack of a semantic pathway. Taken together, these results suggest that, when properly trained, connectionist models of word reading can offer insights into key aspects of reading development in children.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are at least three distinct time scales that are relevant for the evolution of atmospheric convection. These are the time scale of the forcing mechanism, the time scale governing the response to a steady forcing, and the time scale of the response to variations in the forcing. The last of these, tmem, is associated with convective life cycles, which provide an element of memory in the system. A highly simplified model of convection is introduced, which allows for investigation of the character of convection as a function of the three time scales. For short tmem, the convective response is strongly tied to the forcing as in conventional equilibrium parameterization. For long tmem, the convection responds only to the slowly evolving component of forcing, and any fluctuations in the forcing are essentially suppressed. At intermediate tmem, convection becomes less predictable: conventional equilibrium closure breaks down and current levels of convection modify the subsequent response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.