120 resultados para Model Output Statistics

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamical downscaling of Global Climate Models (GCMs) through regional climate models (RCMs) potentially improves the usability of the output for hydrological impact studies. However, a further downscaling or interpolation of precipitation from RCMs is often needed to match the precipitation characteristics at the local scale. This study analysed three Model Output Statistics (MOS) techniques to adjust RCM precipitation; (1) a simple direct method (DM), (2) quantile-quantile mapping (QM) and (3) a distribution-based scaling (DBS) approach. The modelled precipitation was daily means from 16 RCMs driven by ERA40 reanalysis data over the 1961–2000 provided by the ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts) project over a small catchment located in the Midlands, UK. All methods were conditioned on the entire time series, separate months and using an objective classification of Lamb's weather types. The performance of the MOS techniques were assessed regarding temporal and spatial characteristics of the precipitation fields, as well as modelled runoff using the HBV rainfall-runoff model. The results indicate that the DBS conditioned on classification patterns performed better than the other methods, however an ensemble approach in terms of both climate models and downscaling methods is recommended to account for uncertainties in the MOS methods.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the possibilities and limitations of using Regional Climate Model (RCM) output for the simulation of alpine permafrost scenarios. It focuses on the general problem of scale mismatch between RCMs and impact models and, in particular, the special challenges that arise when driving an impact model in topographically complex high-mountain environments with the output of an RCM. Two approaches are introduced that take into account the special difficulties in such areas, and thus enable the use of RCM for alpine permafrost scenario modelling. Intended as an initial example, they are applied at the area of Corvatsch (Upper Engadine, Switzerland) in order to demonstrate and discuss the application of the two approaches, rather than to provide an assessment of future changes in permafrost occurrence. There are still many uncertainties and inaccuracies inherent in climate and impact models, which increase when driving one model with the output of the other. Nevertheless, our study shows that the use of RCMs offers new and promising perspectives for the simulation of high-mountain permafrost scenarios

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ensemble forecast is a collection of runs of a numerical dynamical model, initialized with perturbed initial conditions. In modern weather prediction for example, ensembles are used to retrieve probabilistic information about future weather conditions. In this contribution, we are concerned with ensemble forecasts of a scalar quantity (say, the temperature at a specific location). We consider the event that the verification is smaller than the smallest, or larger than the largest ensemble member. We call these events outliers. If a K-member ensemble accurately reflected the variability of the verification, outliers should occur with a base rate of 2/(K + 1). In operational forecast ensembles though, this frequency is often found to be higher. We study the predictability of outliers and find that, exploiting information available from the ensemble, forecast probabilities for outlier events can be calculated which are more skilful than the unconditional base rate. We prove this analytically for statistically consistent forecast ensembles. Further, the analytical results are compared to the predictability of outliers in an operational forecast ensemble by means of model output statistics. We find the analytical and empirical results to agree both qualitatively and quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuous ranked probability score (CRPS) is a frequently used scoring rule. In contrast with many other scoring rules, the CRPS evaluates cumulative distribution functions. An ensemble of forecasts can easily be converted into a piecewise constant cumulative distribution function with steps at the ensemble members. This renders the CRPS a convenient scoring rule for the evaluation of ‘raw’ ensembles, obviating the need for sophisticated ensemble model output statistics or dressing methods prior to evaluation. In this article, a relation between the CRPS score and the quantile score is established. The evaluation of ‘raw’ ensembles using the CRPS is discussed in this light. It is shown that latent in this evaluation is an interpretation of the ensemble as quantiles but with non-uniform levels. This needs to be taken into account if the ensemble is evaluated further, for example with rank histograms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evidence provided by modelled assessments of future climate impact on flooding is fundamental to water resources and flood risk decision making. Impact models usually rely on climate projections from global and regional climate models (GCM/RCMs). However, challenges in representing precipitation events at catchment-scale resolution mean that decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs. Here the impacts on projected high flows of differing ensemble approaches and application of Model Output Statistics to RCM precipitation are evaluated while assessing climate change impact on flood hazard in the Upper Severn catchment in the UK. Various ensemble projections are used together with the HBV hydrological model with direct forcing and also compared to a response surface technique. We consider an ensemble of single-model RCM projections from the current UK Climate Projections (UKCP09); multi-model ensemble RCM projections from the European Union's FP6 ‘ENSEMBLES’ project; and a joint probability distribution of precipitation and temperature from a GCM-based perturbed physics ensemble. The ensemble distribution of results show that flood hazard in the Upper Severn is likely to increase compared to present conditions, but the study highlights the differences between the results from different ensemble methods and the strong assumptions made in using Model Output Statistics to produce the estimates of future river discharge. The results underline the challenges in using the current generation of RCMs for local climate impact studies on flooding. Copyright © 2012 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanistic catchment-scale phosphorus models appear to perform poorly where diffuse sources dominate. We investigate the reasons for this for one model, INCA-P, testing model output against 18 months of daily data in a small Scottish catchment. We examine key model processes and provide recommendations for model improvement and simplification. Improvements to the particulate phosphorus simulation are especially needed. The model evaluation procedure is then generalised to provide a checklist for identifying why model performance may be poor or unreliable, incorporating calibration, data, structural and conceptual challenges. There needs to be greater recognition that current models struggle to produce positive Nash–Sutcliffe statistics in agricultural catchments when evaluated against daily data. Phosphorus modelling is difficult, but models are not as useless as this might suggest. We found a combination of correlation coefficients, bias, a comparison of distributions and a visual assessment of time series a better means of identifying realistic simulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results are presented from a new web application called OceanDIVA - Ocean Data Intercomparison and Visualization Application. This tool reads hydrographic profiles and ocean model output and presents the data on either depth levels or isotherms for viewing in Google Earth, or as probability density functions (PDFs) of regional model-data misfits. As part of the CLIVAR Global Synthesis and Observations Panel, an intercomparison of water mass properties of various ocean syntheses has been undertaken using OceanDIVA. Analysis of model-data misfits reveals significant differences between the water mass properties of the syntheses, such as the ability to capture mode water properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are now considerable expectations that semi-distributed models are useful tools for supporting catchment water quality management. However, insufficient attention has been given to evaluating the uncertainties inherent to this type of model, especially those associated with the spatial disaggregation of the catchment. The Integrated Nitrogen in Catchments model (INCA) is subjected to an extensive regionalised sensitivity analysis in application to the River Kennet, part of the groundwater-dominated upper Thames catchment, UK The main results are: (1) model output was generally insensitive to land-phase parameters, very sensitive to groundwater parameters, including initial conditions, and significantly sensitive to in-river parameters; (2) INCA was able to produce good fits simultaneously to the available flow, nitrate and ammonium in-river data sets; (3) representing parameters as heterogeneous over the catchment (206 calibrated parameters) rather than homogeneous (24 calibrated parameters) produced a significant improvement in fit to nitrate but no significant improvement to flow and caused a deterioration in ammonium performance; (4) the analysis indicated that calibrating the flow-related parameters first, then calibrating the remaining parameters (as opposed to calibrating all parameters together) was not a sensible strategy in this case; (5) even the parameters to which the model output was most sensitive suffered from high uncertainty due to spatial inconsistencies in the estimated optimum values, parameter equifinality and the sampling error associated with the calibration method; (6) soil and groundwater nutrient and flow data are needed to reduce. uncertainty in initial conditions, residence times and nitrogen transformation parameters, and long-term historic data are needed so that key responses to changes in land-use management can be assimilated. The results indicate the general, difficulty of reconciling the questions which catchment nutrient models are expected to answer with typically limited data sets and limited knowledge about suitable model structures. The results demonstrate the importance of analysing semi-distributed model uncertainties prior to model application, and illustrate the value and limitations of using Monte Carlo-based methods for doing so. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aeolian mineral dust aerosol is an important consideration in the Earth's radiation budget as well as a source of nutrients to oceanic and land biota. The modelling of aeolian mineral dust has been improving consistently despite the relatively sparse observations to constrain them. This study documents the development of a new dust emissions scheme in the Met Office Unified ModelTM (MetUM) based on the Dust Entrainment and Deposition (DEAD) module. Four separate case studies are used to test and constrain the model output. Initial testing was undertaken on a large dust event over North Africa in March 2006 with the model constrained using AERONET data. The second case study involved testing the capability of the model to represent dust events in the Middle East without being re-tuned from the March 2006 case in the Sahara. While the model is unable to capture some of the daytime variation in AERONET AOD there is good agreement between the model and observed dust events. In the final two case studies new observations from in situ aircraft data during the Dust Outflow and Deposition to the Ocean (DODO) campaigns in February and August 2006 were used. These recent observations provided further data on dust size distributions and vertical profiles to constrain the model. The modelled DODO cases were also compared to AERONET data to make sure the radiative properties of the dust were comparable to observations. Copyright © 2009 Royal Meteorological Society and Crown Copyright

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.