27 resultados para Mobile Packet Backbone Network
em CentAUR: Central Archive University of Reading - UK
Resumo:
Recent advancement in wireless communication technologies and automobiles have enabled the evolution of Intelligent Transport System (ITS) which addresses various vehicular traffic issues like traffic congestion, information dissemination, accident etc. Vehicular Ad-hoc Network (VANET) a distinctive class of Mobile ad-hoc Network (MANET) is an integral component of ITS in which moving vehicles are connected and communicate wirelessly. Wireless communication technologies play a vital role in supporting both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication in VANET. This paper surveys some of the key vehicular wireless access technology standards such as 802.11p, P1609 protocols, Cellular System, CALM, MBWA, WiMAX, Microwave, Bluetooth and ZigBee which served as a base for supporting both Safety and Non Safety applications. It also analyses and compares the wireless standards using various parameters such as bandwidth, ease of use, upfront cost, maintenance, accessibility, signal coverage, signal interference and security. Finally, it discusses some of the issues associated with the interoperability among those protocols.
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot – thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animat) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This paper details the components of the overall animat closed loop system architecture and reports on the evaluation of the results from preliminary real-life and simulated robot experiments.
Resumo:
Wireless Personal Area Networks (WPANs) are offering high data rates suitable for interconnecting high bandwidth personal consumer devices (Wireless HD streaming, Wireless-USB and Bluetooth EDR). ECMA-368 is the Physical (PHY) and Media Access Control (MAC) backbone of many of these wireless devices. WPAN devices tend to operate in an ad-hoc based network and therefore it is important to successfully latch onto the network and become part of one of the available piconets. This paper presents a new algorithm for detecting the Packet/Fame Sync (PFS) signal in ECMA-368 to identify piconets and aid symbol timing. The algorithm is based on correlating the received PFS symbols with the expected locally stored symbols over the 24 or 12 PFS symbols, but selecting the likely TFC based on the highest statistical mode from the 24 or 12 best correlation results. The results are very favorable showing an improvement margin in the order of 11.5dB in reference sensitivity tests between the required performance using this algorithm and the performance of comparable systems.
Resumo:
The past decade has witnessed explosive growth of mobile subscribers and services. With the purpose of providing better-swifter-cheaper services, radio network optimisation plays a crucial role but faces enormous challenges. The concept of Dynamic Network Optimisation (DNO), therefore, has been introduced to optimally and continuously adjust network configurations, in response to changes in network conditions and traffic. However, the realization of DNO has been seriously hindered by the bottleneck of optimisation speed performance. An advanced distributed parallel solution is presented in this paper, as to bridge the gap by accelerating the sophisticated proprietary network optimisation algorithm, while maintaining the optimisation quality and numerical consistency. The ariesoACP product from Arieso Ltd serves as the main platform for acceleration. This solution has been prototyped, implemented and tested. Real-project based results exhibit a high scalability and substantial acceleration at an average speed-up of 2.5, 4.9 and 6.1 on a distributed 5-core, 9-core and 16-core system, respectively. This significantly outperforms other parallel solutions such as multi-threading. Furthermore, augmented optimisation outcome, alongside high correctness and self-consistency, have also been fulfilled. Overall, this is a breakthrough towards the realization of DNO.
Resumo:
In recent years researchers in the Department of Cybernetics have been developing simple mobile robots capable of exploring their environment on the basis of the information obtained from a few simple sensors. These robots are used as the test bed for exploring various behaviours of single and multiple organisms: the work is inspired by considerations of natural systems. In this paper we concentrate on that part of the work which involves neural networks and related techniques. These neural networks are used both to process the sensor information and to develop the strategy used to control the robot. Here the robots, their sensors, and the neural networks used and all described. 1.
Resumo:
The Mobile Network Optimization (MNO) technologies have advanced at a tremendous pace in recent years. And the Dynamic Network Optimization (DNO) concept emerged years ago, aimed to continuously optimize the network in response to variations in network traffic and conditions. Yet, DNO development is still at its infancy, mainly hindered by a significant bottleneck of the lengthy optimization runtime. This paper identifies parallelism in greedy MNO algorithms and presents an advanced distributed parallel solution. The solution is designed, implemented and applied to real-life projects whose results yield a significant, highly scalable and nearly linear speedup up to 6.9 and 14.5 on distributed 8-core and 16-core systems respectively. Meanwhile, optimization outputs exhibit self-consistency and high precision compared to their sequential counterpart. This is a milestone in realizing the DNO. Further, the techniques may be applied to similar greedy optimization algorithm based applications.
Resumo:
It has been years since the introduction of the Dynamic Network Optimization (DNO) concept, yet the DNO development is still at its infant stage, largely due to a lack of breakthrough in minimizing the lengthy optimization runtime. Our previous work, a distributed parallel solution, has achieved a significant speed gain. To cater for the increased optimization complexity pressed by the uptake of smartphones and tablets, however, this paper examines the potential areas for further improvement and presents a novel asynchronous distributed parallel design that minimizes the inter-process communications. The new approach is implemented and applied to real-life projects whose results demonstrate an augmented acceleration of 7.5 times on a 16-core distributed system compared to 6.1 of our previous solution. Moreover, there is no degradation in the optimization outcome. This is a solid sprint towards the realization of DNO.
Resumo:
This paper proposes the deployment of a neural network computing environment on Active Networks. Active Networks are packet-switched computer networks in which packets can contain code fragments that are executed on the intermediate nodes. This feature allows the injection of small pieces of codes to deal with computer network problems directly into the network core, and the adoption of new computing techniques to solve networking problems. The goal of our project is the adoption of a distributed neural network for approaching tasks which are specific of the computer network environment. Dynamically reconfigurable neural networks are spread on an experimental wide area backbone of active nodes (ABone) to show the feasibility of the proposed approach.
Resumo:
The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals
Resumo:
Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).
Resumo:
It is usually expected that the intelligent controlling mechanism of a robot is a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot - thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. In particular, the use of rodent primary dissociated cultured neuronal networks for the control of mobile `animals' (artificial animals, a contraction of animal and materials) is a novel approach to discovering the computational capabilities of networks of biological neurones. A dissociated culture of this nature requires appropriate embodiment in some form, to enable appropriate development in a controlled environment within which appropriate stimuli may be received via sensory data but ultimate influence over motor actions retained. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animal) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This 'closed loop' interaction with the environment through both sensing and effecting will enable investigation of its learning capacity This paper details the components of the overall animat closed loop system and reports on the evaluation of the results from the experiments being carried out with regard to robot behaviour.
Resumo:
The general packet radio service (GPRS) has been developed to allow packet data to be transported efficiently over an existing circuit-switched radio network, such as GSM. The main application of GPRS are in transporting Internet protocol (IP) datagrams from web servers (for telemetry or for mobile Internet browsers). Four GPRS baseband coding schemes are defined to offer a trade-off in requested data rates versus propagation channel conditions. However, data rates in the order of > 100 kbits/s are only achievable if the simplest coding scheme is used (CS-4) which offers little error detection and correction (EDC) (requiring excellent SNR) and the receiver hardware is capable of full duplex which is not currently available in the consumer market. A simple EDC scheme to improve the GPRS block error rate (BLER) performance is presented, particularly for CS-4, however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel and improving the user's application data rate. As GPRS requires intensive processing in the baseband, a viable field programmable gate array (FPGA) solution is presented in this paper.
Resumo:
The General Packet Radio Service (GPRS) was developed to allow packet data to be transported efficiently over an existing circuit switched radio network. The main applications for GPRS are in transporting IP datagram’s from the user’s mobile Internet browser to and from the Internet, or in telemetry equipment. A simple Error Detection and Correction (EDC) scheme to improve the GPRS Block Error Rate (BLER) performance is presented, particularly for coding scheme 4 (CS-4), however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel, improving throughput and the user’s application data rate. As GPRS requires intensive processing in the baseband, a viable hardware solution for a GPRS BLER co-processor is discussed that has been currently implemented in a Field Programmable Gate Array (FPGA) and presented in this paper.