4 resultados para Minsky, Marvin
em CentAUR: Central Archive University of Reading - UK
Resumo:
Three main changes to current risk analysis processes are proposed to improve their transparency, openness, and accountability. First, the addition of a formal framing stage would allow interested parties, experts and officials to work together as needed to gain an initial shared understanding of the issue, the objectives of regulatory action, and alternative risk management measures. Second, the scope of the risk assessment is expanded to include the assessment of health and environmental benefits as well as risks, and the explicit consideration of economic- and social-impacts of risk management action and their distribution. Moreover approaches were developed for deriving improved information from genomic, proteomic and metabolomic profiling methods and for probabilistic modelling of health impacts for risk assessment purposes. Third, in an added evaluation stage, interested parties, experts, and officials may compare and weigh the risks, costs, and benefits and their distribution. As part of a set of recommendations on risk communication, we propose that reports on each stage should be made public.
Resumo:
Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020–2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.
Resumo:
Understanding farmer behaviour is needed for local agricultural systems to produce food sustainably while facing multiple pressures. We synthesize existing literature to identify three fundamental questions that correspond to three distinct areas of knowledge necessary to understand farmer behaviour: 1) decision-making model; 2) cross-scale and cross-level pressures; and 3) temporal dynamics. We use this framework to compare five interdisciplinary case studies of agricultural systems in distinct geographical contexts across the globe. We find that these three areas of knowledge are important to understanding farmer behaviour, and can be used to guide the interdisciplinary design and interpretation of studies in the future. Most importantly, we find that these three areas need to be addressed simultaneously in order to understand farmer behaviour. We also identify three methodological challenges hindering this understanding: the suitability of theoretical frameworks, the trade-offs among methods and the limited timeframe of typical research projects. We propose that a triangulation research strategy that makes use of mixed methods, or collaborations between researchers across mixed disciplines, can be used to successfully address all three areas simultaneously and show how this has been achieved in the case studies. The framework facilitates interdisciplinary research on farmer behaviour by opening up spaces of structured dialogue on assumptions, research questions and methods employed in investigation.