3 resultados para Mineral Range Railroad Company

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variable rate applications of nitrogen (N) are of environmental and economic interest. Regular measurements of soil N supply are difficult to achieve practically. Therefore accurate model simulations of soil N supply might provide a practical solution for site-specific management of N. Mineral N, an estimate of N supply, was simulated by the model SUNDIAL (Simulation of Nitrogen Dynamics In Arable Land) at more than 100 locations within three arable fields in Bedfordshire, UK. The results were compared with actual measurements. The outcomes showed that the spatial patterns of the simulations of mineral N corresponded to the measurements but the range of values was underestimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of reactive uptake of gaseous N2O5 on sub-micron aerosol particles composed of aqueous ammonium sulfate, ammonium hydrogensulfate and sodium nitrate has been investigated. Uptake was measured in a laminar flow reactor, coupled with a differential mobility analyser (DMA) to obtain the aerosol size distribution, with N2O5 detection using NO chemiluminescence. FTIR spectroscopy was used to obtain information about the composition and water content of the aerosol particles under the conditions used in the kinetic measurements. The aerosols were generated by the nebulisation of aqueous salt solutions. The uptake coefficient on the sulfate salts was in the range [gamma]=0.0015 to 0.033 depending on temperature, humidity and phase of the aerosol. On sodium nitrate aerosols the values were much lower, [gamma]<0.001, confirming the inhibition of N2O5 hydrolysis by nitrate ions. At high humidity (>50% r.h.) the uptake coefficient on liquid sulfate aerosols is independent of water content, but at lower humidity, especially below the efflorescence point, the reactivity of the aerosol declines, correlating with the lower water content. The lower uptake rate on solid aerosols may be due to limitations imposed by the liquid volume in the particles. Uptake on sulfate aerosols showed a negative temperature dependence at T>290 K but no significant temperature dependence at lower temperatures. The results are generally consistent with previous models of N2O5 hydrolysis where the reactive intermediate is NO2+ produced by autoionisation of nitrogen pentoxide in the condensed phase.