3 resultados para Microwave Imaging Breast

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ozone profiles from the Microwave Limb Sounder (MLS) onboard the Aura satellite of the NASA's Earth Observing System (EOS) were experimentally added to the European Centre for Medium-range Weather Forecasts (ECMWF) four-dimensional variational (4D-var) data assimilation system of version CY30R1, in which total ozone columns from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) onboard the Envisat satellite and partial profiles from the Solar Backscatter Ultraviolet (SBUV/2) instrument onboard the NOAA-16 satellite have been operationally assimilated. As shown by results for the autumn of 2005, additional constraints from MLS data significantly improved the agreement of the analyzed ozone fields with independent observations throughout most of the stratosphere, owing to the daily near-global coverage and good vertical resolution of MLS observations. The largest impacts were seen in the middle and lower stratosphere, where model deficiencies could not be effectively corrected by the operational observations without the additional information on the ozone vertical distribution provided by MLS. Even in the upper stratosphere, where ozone concentrations are mainly determined by rapid chemical processes, dense and vertically resolved MLS data helped reduce the biases related to model deficiencies. These improvements resulted in a more realistic and consistent description of spatial and temporal variations in stratospheric ozone, as demonstrated by cases in the dynamically and chemically active regions. However, combined assimilation of the often discrepant ozone observations might lead to underestimation of tropospheric ozone. In addition, model deficiencies induced large biases in the upper stratosphere in the medium-range (5-day) ozone forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10-4M aluminium chloride or 10-4M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8m pores of a membrane using xCELLigence technology. Long-term exposure (37weeks) to 10-4M aluminium chloride or 10-4M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aetiology of breast cancer is multifactorial. While there are known genetic predispositions to the disease it is probable that environmental factors are also involved. Recent research has demonstrated a regionally specific distribution of aluminium in breast tissue mastectomies while other work has suggested mechanisms whereby breast tissue aluminium might contribute towards the aetiology of breast cancer. We have looked to develop microwave digestion combined with a new form of graphite furnace atomic absorption spectrometry as a precise, accurate and reproducible method for the measurement of aluminium in breast tissue biopsies. We have used this method to test the thesis that there is a regional distribution of aluminium across the breast in women with breast cancer. Microwave digestion of whole breast tissue samples resulted in clear homogenous digests perfectly suitable for the determination of aluminium by graphite furnace atomic absorption spectrometry. The instrument detection limit for the method was 0.48 μg/L. Method blanks were used to estimate background levels of contamination of 14.80 μg/L. The mean concentration of aluminium across all tissues was 0.39 μg Al/g tissue dry wt. There were no statistically significant regionally specific differences in the content of aluminium. We have developed a robust method for the precise and accurate measurement of aluminium in human breast tissue. There are very few such data currently available in the scientific literature and they will add substantially to our understanding of any putative role of aluminium in breast cancer. While we did not observe any statistically significant differences in aluminium content across the breast it has to be emphasised that herein we measured whole breast tissue and not defatted tissue where such a distribution was previously noted. We are very confident that the method developed herein could now be used to provide accurate and reproducible data on the aluminium content in defatted tissue and oil from such tissues and thereby contribute towards our knowledge on aluminium and any role in breast cancer.