3 resultados para Micro-structures
em CentAUR: Central Archive University of Reading - UK
Resumo:
The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest since four decades. A satisfactory understanding of the microscopic origin of anisotropy of magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of magnetoviscous effect and the underlying change in micro-structures of ferrofluids. Our results indicate that field-induced chain-like structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A non-monotonic behaviour in the anisotropy of magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of micro-structure formation.
Resumo:
A new technique is reported for micro-machining millimetre-wave rectangular waveguide components. S-parameter measurements on these structures show that they achieve lower loss than those produced using any other on-chip fabrication technique, have highly accurate dimensions, are physically robust, and are cheap and easy to manufacture.
Resumo:
A novel technique for micro-machining millimeter and submillimeter-wave rectangular waveguide components is reported. These are fabricated in two halves which simply snap together, utilizing locating pins and holes, and are physically robust, and cheap, and easy to manufacture. In addition, S-parameter measurements on these structures are reported for the first time and display lower loss than previously reported micro-machined rectangular waveguides.