37 resultados para Methods for Multi-criteria Evaluation

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to present two multi-criteria decision-making models, including an Analytic Hierarchy Process (AHP) model and an Analytic Network Process (ANP) model for the assessment of deconstruction plans and to make a comparison between the two models with an experimental case study. Deconstruction planning is under pressure to reduce operation costs, adverse environmental impacts and duration, in the meanwhile to improve productivity and safety in accordance with structure characteristics, site conditions and past experiences. To achieve these targets in deconstruction projects, there is an impending need to develop a formal procedure for contractors to select a most appropriate deconstruction plan. Because numbers of factors influence the selection of deconstruction techniques, engineers definitely need effective tools to conduct the selection process. In this regard, multi-criteria decision-making methods such as AHP have been adopted to effectively support deconstruction technique selection in previous researches. in which it has been proved that AHP method can help decision-makers to make informed decisions on deconstruction technique selection based on a sound technical framework. In this paper, the authors present the application and comparison of two decision-making models including the AHP model and the ANP model for deconstruction plan assessment. The paper concludes that both AHP and ANP are viable and capable tools for deconstruction plan assessment under the same set of evaluation criteria. However, although the ANP can measure relationship among selection criteria and their sub-criteria, which is normally ignored in the AHP, the authors also indicate that whether the ANP model can provide a more accurate result should be examined in further research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased penetration of generation and decentralised control are considered to be feasible and effective solution for reducing cost and emissions and hence efficiency associated with power generation and distribution. Distributed generation in combination with the multi-agent technology are perfect candidates for this solution. Pro-active and autonomous nature of multi-agent systems can provide an effective platform for decentralised control whilst improving reliability and flexibility of the grid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 20002007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., OctoberJanuary), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the IndoGangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from CloudAerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that stakeholder-oriented multi-criteria analysis (MCA) can adequately address a variety of sustainable development dilemmas in decision-making, especially when applied to complex project evaluations involving multiple objectives and multiple stakeholder groups. Such evaluations are typically geared towards satisfying simultaneously private economic goals, broader social objectives and environmental targets. We show that, under specific conditions, a variety of stakeholder-oriented MCA approaches may be able to contribute substantively to the resolution or improved governance of societal conflicts and the pursuit of the public good in the form of sustainable development. We contrast the potential usefulness of these stakeholder-oriented approaches in terms of their ability to contribute to sustainable development with more conventional MCA approaches and social costbenefit analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (20082009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for JanuaryMarch underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for JulySeptember), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sustainable intelligent building is a building that has the best combination of environmental, social, economic and technical values. And its sustainability assessment is related with system engineering methods and multi-criteria decision-making. Therefore firstly, the wireless monitoring system of sustainable parameters for intelligent buildings is achieved; secondly, the indicators and key issues based on the whole life circle for sustainability of intelligent buildings are researched; thirdly, the sustainable assessment model identified on the structure entropy and fuzzy analytic hierarchy process is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of EU policy in the area of rural land use management often encounters problems of multiple and poorly articulated objectives. Agri-environmental policy has a range of aims, including natural resource protection, biodiversity conservation and the protection and enhancement of landscape quality. Forestry policy, in addition to production and environmental objectives, increasingly has social aims, including enhancement of human health and wellbeing, lifelong learning, and the cultural and amenity value of the landscape. Many of these aims are intangible, making them hard to define and quantify. This article describes two approaches for dealing with such situations, both of which rely on substantial participation by stakeholders. The first is the Agri-Environment Footprint Index, a form of multi-criteria participatory approach. The other, applied here to forestry, has been the development of multi-purpose approaches to evaluation, which respond to the diverse needs of stakeholders through the use of mixed methods and a broad suite of indicators, selected through a participatory process. Each makes use of case studies and involves stakeholders in the evaluation process, thereby enhancing their commitment to the programmes and increasing their sustainability. Both also demonstrate more holistic approaches to evaluation than the formal methods prescribed in the EU Common Monitoring and Evaluation Framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of funding schemes and policy instruments exist to effect enhancement of the landscapes and habitats of the UK. While a number of assessments of these mechanisms have been conducted, little research has been undertaken to compare both quantitatively and qualitatively their relative effectiveness across a range of criteria. It is argued that few tools are available for such a multi-faceted evaluation of effectiveness. A form of Multiple Criteria Decision Analysis (MCDA) is justified and utilized as a framework in which to evaluate the effectiveness of nine mechanisms in relation to the protection of existing areas of chalk grassland and the creation of new areas in the South Downs of England. These include established schemes, such as the Countryside Stewardship and Environmentally Sensitive Area Schemes, along with other less common mechanisms, for example, land purchase and tender schemes. The steps involved in applying an MCDA to evaluate such mechanisms are identified and the process is described. Quantitative results from the comparison of the effectiveness of different mechanisms are presented, although the broader aim of the paper is that of demonstrating the performance of MCDA as a tool for measuring the effectiveness of mechanisms aimed at landscape and habitat enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a tool for comparative rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban metabolism considers a city as a system with flows of energy and material between it and the environment. Recent advances in bio-physical sciences provide methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, good communication is required to provide this new knowledge and its implications to endusers (such as urban planners, architects and engineers). The FP7 project BRIDGE (sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aimed to address this gap by illustrating the advantages of considering these issues in urban planning. The BRIDGE Decision Support System (DSS) aids the evaluation of the sustainability of urban planning interventions. The Multi Criteria Analysis approach adopted provides a method to cope with the complexity of urban metabolism. In consultation with targeted end-users, objectives were defined in relation to the interactions between the environmental elements (fluxes of energy, water, carbon and pollutants) and socioeconomic components (investment costs, housing, employment, etc.) of urban sustainability. The tool was tested in five case study cities: Helsinki, Athens, London, Florence and Gliwice; and sub-models were evaluated using flux data selected. This overview of the BRIDGE project covers the methods and tools used to measure and model the physical flows, the selected set of sustainability indicators, the methodological framework for evaluating urban planning alternatives and the resulting DSS prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the potential of using Participatory Farm Management methods to examine the suitability of a technology with farmers prior to on-farm trials. A study examining the suitability of green manuring as a technology for use with wet season tomato producers in Ghana is described. Findings from this case-study demonstrate that Participatory Budgeting can be used by farmers and researchers to analyse current cultivation practices, identify the options for including green manures into the system and explore the direct and wider resource implications of the technology. Scored-Causal Diagrams can be used to identify farmers' perceptions of the relative importance of the problem that the technology seeks to address. The use of the methods in this examine evaluation process appears to have the potential to improve the effectiveness and efficiency of the adaptive research process. This ensures that technologies subsequently examined in trials ate relevant to farmers' interests, existing systems and resources, thereby increasing the chances of farmer adoption. It is concluded that this process has potential for use-with other technologies and in other farming systems. (C) 2002 Elsevier Science Ltd. All rights reserved.