5 resultados para Mesocortical dopamine system

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine D4 receptor (DRD4) genes are likely to impact directly on the functioning of the frontal cortex, whereas polymorphisms in the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes might influence frontal cortex functioning indirectly via strong frontostriatal connections. A significant effect of the COMT valine158methionine (Val158Met) polymorphism was found. Infants with the Met/Met genotype were significantly less distractible than infants with the Val/Val genotype in Freeze-Frame trials presenting an engaging central stimulus. In addition, there was an interaction with the DAT1 3′ variable number of tandem repeats polymorphism; the COMT effect was present only in infants who did not have two copies of the DAT1 10-repeat allele. These findings indicate that dopaminergic polymorphisms affect selective aspects of attention as early as infancy and further validate the Freeze-Frame task as a frontal cortex task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human D-2Long (D-2L) and D-2Short (D-2S) dopamine receptor isoforms were modified at their N-terminus by the addition of a human immunodeficiency virus (HIV) or a FLAG epitope tag. The receptors were then expressed in Spodoptera frugiperda 9 (Sf9) cells using the baculovirus system, and their oligomerization was investigated by means of co-immunoprecipitation and time-resolved fluorescence resonance energy transfer (FRET). [H-3] Spiperone labelled D-2 receptors in membranes prepared from Sf9 cells expressing epitope-tagged D-2L or D-2S receptors, with a pK(d) value of approximate to 10. Co-immunoprecipitation using antibodies specific for the tags showed constitutive homo-oligomerization of D-2L and D-2S receptors in Sf9 cells. When the FLAG-tagged D-2S and HIV-tagged D-2L receptors were co-expressed, co-immunoprecipitation showed that the two isoforms can also form hetero-oligomers in Sf9 cells. Time-resolved FRET with europium and XL665-labelled antibodies was applied to whole Sf9 cells and to membranes from Sf9 cells expressing epitope-tagged D-2 receptors. In both cases, constitutive homo-oligomers were revealed for D-2L and D-2S isoforms. Time-resolved FRET also revealed constitutive homo-oligomers in HEK293 cells expressing FLAG-tagged D-2S receptors. The D-2 receptor ligands dopamine, R-(-) propylnorapomorphine, and raclopride did not affect oligomerization of D-2L and D-2S in Sf9 and HEK293 cells. Human D-2 dopamine receptors can therefore form constitutive oligomers in Sf9 cells and in HEK293 cells that can be detected by different approaches, and D-2 oligomerization in these cells is not regulated by ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dopamine D-2Short receptor:G(alphao) fusion protein was expressed in Sf9 cells using the baculovirus expression system. [H-3]Spiperone bound to D-2Short:G(alphao) with a pK(d) approximate to 10. Dopamine stimulated the binding of [S-35]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) to D-2Short:G(alphao) expressed with Gbeta(1)gamma(2) (E-max > 460%; pEC(50) 5.43 +/- 0.06). Most of the putative D-2 antagonists behaved as inverse agonists (suppressing basal [S-35]GTPgammaS binding) at D-2Short:G(alphao)/Gbeta(1)gamma(2) although (-)-suipiride and ziprasidone were neutral antagonists. Competition of [H-3]spiperone binding by dopamine and 10,11-dihydroxy-N-n-propylnorapo-morphine revealed two, binding sites of different affinities, even in the presence of GTP (100 muM). The D-2Short:G(alphao) fusion protein is therefore a good model for characterising D-2 receptors. (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The human dopamine D-2long (D-2L) receptor was expressed with four different G proteins in Sf9 cells using the baculovirus expression system. When co-expressed with G(i)/G(o) G proteins (G(i1)alpha, G(i2)alpha, G(i3)alpha, or G(o)alpha, plus Gbeta(1) and Ggamma(2)) the receptor displayed a high-affinity binding site for the agonists (dopamine and NPA), which was sensitive to GTP (100 mum), demonstrating interaction between the receptor and the different G proteins. 2 The receptor to G protein ratio (R: G ratio) was evaluated using [H-3]-spiperone saturation binding (R) and [S-35]-GTPgammaS saturation binding (G). R: G ratios of 1: 12, 1: 3, 1: 14 and 1: 5 were found for G(i1), G(i2), G(i3), and Go preparations, respectively. However, when R:G ratios of 1:2 and 1: 12 were compared for G(i2) and G(o), no difference was found for the stimulation of [S-35]-GTPgammaS binding. 3 Several agonists were tested for their ability to stimulate [S-35]-GTPgammaS binding to membranes co-expressing the receptor and various G proteins. All the compounds tested showed agonist activity in preparations expressing G(i3) and G(o). However, for G(i2) and G(i1) preparations, compounds such as S-(-)-3-PPP and p-tyramine were unable to stimulate [S-35]-GTPyS binding. 4 Most of the compounds showed higher relative efficacies (compared to dopamine) and higher potencies in the preparation expressing G(o). Comparison of the effects of different agonists in the different preparations showed that each agonist differentially activates the four G proteins. 5 We conclude that the degree of selectivity of G protein activation by the D-2L receptor can depend on the conformation of the receptor stabilised by an agonist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human D-2short (D-2S) dopamine receptor has been expressed together with the G proteins Gi2 and Go in insect cells using the baculovirus system. Levels of receptor were determined using [H-3]spiperone binding. Levels of G protein heterotrimer were determined using quantitative Western blot and using [S-35]GTPgammaS saturation binding experiments. Levels of the receptor and G protein and the receptor/G protein ratio were similar in the two preparations. Stimulation of [S-35]GTPgammaS binding by a range of agonists occurred with higher relative efficacy and in some cases higher potency in the preparation expressing Go, indicating that interaction of the D-2S receptor is more efficient with this G protein. The effects of various G protein-selective agents on 10,11-dihydroxy-N-n-propylnorapomorphine ([H-3]NPA) binding were used to examine the receptor/G protein complex in the two preparations. Suramin inhibited [H-3]NPA binding with slightly higher potency in the Gi2 preparation, whereas GppNHp inhibited [H-3]NPA binding with greater potency (similar to6-fold) in the Go preparation. This may imply that the G protein is more readily activated in the D-2S/Go preparation. [H-3]Spiperone binding occurred with an increased B-max in the presence of suramin in the Go preparation but not in the Gi2 preparation, suggesting a higher affinity interaction between the free receptor and this G protein. It is concluded that the higher efficiency activation of Go by the D-2S receptor may be a function of higher affinity receptor/G protein interaction as well as a greater ability to activate the G protein. (C) 2003 Elsevier Science Inc. All rights reserved.