10 resultados para Membrane-transport
em CentAUR: Central Archive University of Reading - UK
Resumo:
Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH_. In root cells, extracellular OH_ activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH_-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH_. An OH_-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.
Resumo:
IVET was used to identify genes that are specifically expressed in the rhizosphere of the pea-nodulating bacterium Rhizobium leguminosarum A34. A library of R. leguminosarum A34 cloned in the integration vector pIE1, with inserts upstream of a promoter-less purN:gfp:gusA, was conjugated into purN host RU2249 and recombined into the genome. After removal of colonies that expressed the reporter genes of the vector under laboratory conditions, the library was inoculated into a nonsterile pea rhizosphere. The key result is that 29 rhizosphere-induced loci were identified. Sequence analysis of these clones showed that a wide variety of R. leguminosarum A34 genes are expressed specifically in the rhizosphere including those encoding proteins involved in environmental sensing, control of gene expression, metabolic reactions and membrane transport. These genes are likely to be important for survival and colonization of the pea rhizosphere.
Resumo:
The EfeUOB system of Escherichia coli is a tripartite, low pH, ferrous iron transporter. It resembles the high-affinity iron transporter (Ftr1p-Fet3p) of yeast in that EfeU is homologous to Ftr1p, an integral-membrane iron-permease. However, EfeUOB lacks an equivalent of the Fet3p component—the multicopper oxidase with three cupredoxin-like domains. EfeO and EfeB are periplasmic but their precise roles are unclear. EfeO consists primarily of a C-terminal peptidase-M75 domain with a conserved ‘HxxE’ motif potentially involved in metal binding. The smaller N-terminal domain (EfeO-N) is predicted to be cupredoxin (Cup) like, suggesting a previously unrecognised similarity between EfeO and Fet3p. Our structural modelling of the E. coli EfeO Cup domain identifies two potential metal-binding sites. Site I is predicted to bind Cu2+ using three conserved residues (C41 and 103, and E66) and M101. Of these, only one (C103) is conserved in classical cupredoxins where it also acts as a Cu ligand. Site II most probably binds Fe3+ and consists of four well conserved surface Glu residues. Phylogenetic analysis indicates that the EfeO-Cup domains form a novel Cup family, designated the ‘EfeO-Cup’ family. Structural modelling of two other representative EfeO-Cup domains indicates that different subfamilies employ distinct ligand sets at their proposed metal-binding sites. The ~100 efeO homologues in the bacterial sequence databases are all associated with various iron-transport related genes indicating a common role for EfeO-Cup proteins in iron transport, supporting a new copper-iron connection in biology.
Resumo:
Spontaneous mutants of Rhizobium leguminosarum bv. viciae 3841 were isolated that grow faster than the wild type on gamma-aminobutyric acid (GABA) as the sole carbon and nitrogen source. These strains (RU1736 and RU1816) have frameshift mutations (gtsR101 and gtsR102, respectively) in a GntR-type regulator (GtsR) that result in a high rate of constitutive GABA transport. Tn5 mutagenesis and quantitative reverse transcription-PCR showed that GstR regulates expression of a large operon (pRL100242 to pRL100252) on the Sym plasmid that is required for GABA uptake. An ABC transport system, GtsABCD (for GABA transport system) (pRL100248-51), of the spermidine/putrescine family is part of this operon. GtsA is a periplasmic binding protein, GtsB and GtsC are integral membrane proteins, and GtsD is an ATP-binding subunit. Expression of gtsABCD from a lacZ promoter confirmed that it alone is responsible for high rates of GABA transport, enabling rapid growth of strain 3841 on GABA. Gts transports open-chain compounds with four or five carbon atoms with carboxyl and amino groups at, or close to, opposite termini. However, aromatic compounds with similar spacing between carboxyl and amino groups are excellent inhibitors of GABA uptake so they may also be transported. In addition to the ABC transporter, the operon contains two putative mono-oxygenases, a putative hydrolase, a putative aldehyde dehydrogenase, and a succinate semialdehyde dehydrogenase. This suggests the operon may be involved in the transport and breakdown of a more complex precursor to GABA. Gts is not expressed in pea bacteroids, and gtsB mutants are unaltered in their symbiotic phenotype, suggesting that Bra is the only GABA transport system available for amino acid cycling.
Resumo:
Bacteria commonly utilise a unique type of transporter, called Feo, to specifically acquire the ferrous (Fe2+) form of iron from their environment. Enterobacterial Feo systems are composed of three proteins: FeoA, a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. We provide a review of the current literature combined with a bioinformatic assessment of bacterial Feo systems showing how they exhibit common features, as well as differences in organisation and composition which probably reflect variations in mechanisms employed and function.
Resumo:
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.
Resumo:
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.
Resumo:
Bacteria commonly utilise a unique type of transporter, called Feo, to specifically acquire the ferrous (Fe2+) form of iron from their environment. Enterobacterial Feo systems are composed of three proteins: FeoA, a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. We provide a review of the current literature combined with a bioinformatic assessment of bacterial Feo systems showing how they exhibit common features, as well as differences in organisation and composition which probably reflect variations in mechanisms employed and function.
Resumo:
Major outer membrane proteins (MOMPs) of Gram negative bacteria are one of the most intensively studied membrane proteins. MOMPs are essential for maintaining the structural integrity of bacterial outer membranes and in adaptation of parasites to their hosts. There is evidence to suggest a role for purified MOMP from Chlamydophila pneumoniae and corresponding MOMP-derived peptides in immune-modulation, leading to a reduced atherosclerotic phenotype in apoE−/− mice via a characteristic dampening of MHC class II activity. The work reported herein tests this hypothesis by employing a combination of homology modelling and docking to examine the detailed molecular interactions that may be responsible. A three-dimensional homology model of the C. pneumoniae MOMP was constructed based on the 14 transmembrane β-barrel crystal structure of the fatty acid transporter from Escherichia coli, which provides a plausible transport mechanism for MOMP. Ligand docking experiments were used to provide details of the possible molecular interactions driving the binding of MOMP-derived peptides to MHC class II alleles known to be strongly associated with inflammation. The docking experiments were corroborated by predictions from conventional immuno-informatic algorithms. This work supports further the use of MOMP in C. pneumoniae as a possible vaccine target and the role of MOMP-derived peptides as vaccine candidates for immune-therapy in chronic inflammation that can result in cardiovascular events.
Resumo:
In unstimulated cells, proteins of the nuclear factor kappaB (NF-kappaB) transcription factor family are sequestered in the cytoplasm through interactions with IkappaB inhibitor proteins. Tumor necrosis factor alpha (TNF-alpha) activates the degradation of IkappaB-alpha and the nuclear import of cytoplasmic NF-kappaB. Nuclear localization of numerous cellular proteins is mediated by the ability of the cytoskeleton, usually microtubules, to direct their perinuclear accumulation. In a former study we have shown that activated NF-kappaB rapidly moves from distal processes in neurons towards the nucleus. The fast transport rate suggests the involvement of motor proteins in the transport of NF-kappaB. Here we address the question how NF-kappaB arrives at the nuclear membrane before import in non-neuronal cells, i.e., by diffusion alone or with the help of active transport mechanisms. Using confocal microscopy imaging and analysis of nuclear protein extracts, we show that NF-kappaB movement through the cytoplasm to the nucleus is independent of the cytoskeleton, in the three cell lines investigated here. Additionally we demonstrate that NF-kappaB p65 is not associated with the dynein/dynactin molecular motor complex. We propose that cells utilize two distinct mechanisms of NF-kappaB transport: (1) signaling via diffusion over short distances in non-neuronal cells and (2) transport via motor proteins that move along the cytoskeleton in neuronal processes where the distances between sites of NF-kappaB activation and nucleus can be vast.