7 resultados para Media law
em CentAUR: Central Archive University of Reading - UK
Resumo:
The successful enforcement of health and safety regulation is reliant upon the ability of regulatory agencies to demonstrate the legitimacy of the system of regulatory controls. While 'big cases' are central to this process, there are also significant legitimatory implications associated with 'minor' cases, including media-reported tales of pettiness and heavy-handedness in the interpretation and enforcement of the law. The popular media regularly report stories of 'regulatory unreasonableness', and they can pass quickly into mainstream public knowledge. A story's appeal becomes more important than its factual veracity; they are a form of 'regulatory myth'. This paper discusses the implications of regulatory myths for health and safety regulators, and analyses their challenges for regulators, paying particular attention to the Health and Safety Executive (HSE) which has made concerted efforts to address regulatory myths attaching to its activities. It will be shown that such stories constitute sustained normative challenges to the legitimacy of the regulator, and political challenges to the burgeoning regulatory state, because they reflect some of the key concerns of late-modern society.
Resumo:
The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.