11 resultados para Measurement accuracy

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the design and manufacture of the filters and antireflection coatings used in the HIRDLS instrument. The multilayer design of the filters and coatings, choice of layer materials, and the deposition techniques adopted to ensure adequate layer thickness control is discussed. The spectral assessment of the filters and coatings is carried out using a FTIR spectrometer; some measurement results are presented together with discussion of measurement accuracy and the identification and avoidance of measurement artifacts. The post-deposition processing of the filters by sawing to size, writing of an identification code onto the coatings and the environmental testing of the finished filters are also described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With a wide range of applications benefiting from dense network air temperature observations but with limitations of costs, existing siting guidelines and risk of damage to sensors, new methods are required to gain a high resolution understanding of the spatio-temporal patterns of urban meteorological phenomena such as the urban heat island or precision farming needs. With the launch of a new generation of low cost sensors it is possible to deploy a network to monitor air temperature at finer spatial resolutions. Here we investigate the Aginova Sentinel Micro (ASM) sensor with a bespoke radiation shield (together < US$150) which can provide secure near-real-time air temperature data to a server utilising existing (or user deployed) Wireless Fidelity (Wi-Fi) networks. This makes it ideally suited for deployment where wireless communications readily exist, notably urban areas. Assessment of the performance of the ASM relative to traceable standards in a water bath and atmospheric chamber show it to have good measurement accuracy with mean errors < ± 0.22 °C between -25 and 30 °C, with a time constant in ambient air of 110 ± 15 s. Subsequent field tests of it within the bespoke shield also had excellent performance (root-mean-square error = 0.13 °C) over a range of meteorological conditions relative to a traceable operational UK Met Office platinum resistance thermometer. These results indicate that the ASM and bespoke shield are more than fit-for-purpose for dense network deployment in urban areas at relatively low cost compared to existing observation techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences the uncertainty in determining the formation temperature is provided. We demonstrate that the nominal homogenisation temperature of a single inclusion can be determined with an accuracy of ±0.25 °C, if the volume of the inclusion is larger than 105 μm3. With this method, we could measure in a proof-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 °C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 °C, calculated from actual measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 °C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect returns from the UK's Doppler weather radars were collected in the summers of 2007 and 2008, to ascertain their usefulness in providing information about boundary layer winds. Such observations could be assimilated into numerical weather prediction models to improve forecasts of convective showers before precipitation begins. Significant numbers of insect returns were observed during daylight hours on a number of days through this period, when they were detected at up to 30 km range from the radars, and up to 2 km above sea level. The range of detectable insect returns was found to vary with time of year and temperature. There was also a very weak correlation with wind speed and direction. Use of a dual-polarized radar revealed that the insects did not orient themselves at random, but showed distinct evidence of common orientation on several days, sometimes at an angle to their direction of travel. Observation minus model background residuals of wind profiles showed greater bias and standard deviation than that of other wind measurement types, which may be due to the insects' headings/airspeeds and to imperfect data extraction. The method used here, similar to the Met Office's procedure for extracting precipitation returns, requires further development as clutter contamination remained one of the largest error contributors. Wind observations derived from the insect returns would then be useful for data assimilation applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological risk assessments must increasingly consider the effects of chemical mixtures on the environment as anthropogenic pollution continues to grow in complexity. Yet testing every possible mixture combination is impractical and unfeasible; thus, there is an urgent need for models that can accurately predict mixture toxicity from single-compound data. Currently, two models are frequently used to predict mixture toxicity from single-compound data: Concentration addition and independent action (IA). The accuracy of the predictions generated by these models is currently debated and needs to be resolved before their use in risk assessments can be fully justified. The present study addresses this issue by determining whether the IA model adequately described the toxicity of binary mixtures of five pesticides and other environmental contaminants (cadmium, chlorpyrifos, diuron, nickel, and prochloraz) each with dissimilar modes of action on the reproduction of the nematode Caenorhabditis elegans. In three out of 10 cases, the IA model failed to describe mixture toxicity adequately with significant or antagonism being observed. In a further three cases, there was an indication of synergy, antagonism, and effect-level-dependent deviations, respectively, but these were not statistically significant. The extent of the significant deviations that were found varied, but all were such that the predicted percentage effect seen on reproductive output would have been wrong by 18 to 35% (i.e., the effect concentration expected to cause a 50% effect led to an 85% effect). The presence of such a high number and variety of deviations has important implications for the use of existing mixture toxicity models for risk assessments, especially where all or part of the deviation is synergistic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid development in technology over recent years, construction, in common with many areas of industry, has become increasingly complex. It would, therefore, seem to be important to develop and extend the understanding of complexity so that industry in general and in this case the construction industry can work with greater accuracy and efficiency to provide clients with a better service. This paper aims to generate a definition of complexity and a method for its measurement in order to assess its influence upon the accuracy of the quantity surveying profession in UK new build office construction. Quantitative data came from an analysis of twenty projects of varying size and value and qualitative data came from interviews with professional quantity surveyors. The findings highlight the difficulty in defining and measuring project complexity. The correlation between accuracy and complexity was not straightforward, being subjected to many extraneous variables, particularly the impact of project size. Further research is required to develop a better measure of complexity. This is in order to improve the response of quantity surveyors, so that an appropriate level of effort can be applied to individual projects, permitting greater accuracy and enabling better resource planning within the profession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to undertake repeat measurements of flow-mediated dilatation (FMD) within a short time of a previous measurement would be useful to improve accuracy or to repeat a failed initial procedure. Although standard methods report that a minimum of 10 min is required between measurements, there is no published data to support this. Thirty healthy volunteers had five FMD measurements performed within a 2-h period, separated by various time intervals (5, 15 and 30 min). In 19 volunteers, FMD was also performed as soon as the vessel had returned to its baseline diameter. There was no significant difference between any of the FMD measurements or parameters across the visits indicating that repeat measurements may be taken after a minimum of 5 min or as soon as the vessel has returned to its baseline diameter, which in some subjects may be less than 5 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiration chambers are one of the primary sources of data on methane emissions from livestock. This paper describes the results from a coordinated set of chamber validation experiments which establishes the absolute accuracy of the methane emission rates measured by the chambers, and for the first time provides metrological traceability to international standards, assesses the impact of both analyser and chamber response times on measurement uncertainty and establishes direct comparability between measurements made across different facilities with a wide range of chamber designs. As a result of the validation exercise the estimated combined uncertainty associated with the overall capability across all facilities reduced from 25.7% (k = 2, 95% confidence) before the validation to 2.1% (k = 2, 95% confidence) when the validation results are applied to the facilities’ data.