42 resultados para Matthias Stickel
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper discusses the risks of a shutdown of the thermohaline circulation (THC) for the climate system, for ecosystems in and around the North Atlantic as well as for fisheries and agriculture by way of an Integrated Assessment. The climate model simulations are based on greenhouse gas scenarios for the 21st century and beyond. A shutdown of the THC, complete by 2150, is triggered if increased freshwater input from inland ice melt or enhanced runoff is assumed. The shutdown retards the greenhouse gas-induced atmospheric warming trend in the Northern Hemisphere, but does not lead to a persistent net cooling. Due to the simulated THC shutdown the sea level at the North Atlantic shores rises by up to 80 cm by 2150, in addition to the global sea level rise. This could potentially be a serious impact that requires expensive coastal protection measures. A reduction of marine net primary productivity is associated with the impacts of warming rather than a THC shutdown. Regional shifts in the currents in the Nordic Seas could strongly deteriorate survival chances for cod larvae and juveniles. This could lead to cod fisheries becoming unprofitable by the end of the 21st century. While regional socioeconomic impacts might be large, damages would be probably small in relation to the respective gross national products. Terrestrial ecosystem productivity is affected much more by the fertilization from the increasing CO2 concentration than by a THC shutdown. In addition, the level of warming in the 22nd to 24th century favours crop production in northern Europe a lot, no matter whether the THC shuts down or not. CO2 emissions corridors aimed at limiting the risk of a THC breakdown to 10% or less are narrow, requiring departure from business-as-usual in the next few decades. The uncertainty about THC risks is still high. This is seen in model analyses as well as in the experts’ views that were elicited. The overview of results presented here is the outcome of the Integrated Assessment project INTEGRATION.
Resumo:
Comprehensive overview of the remains of Early Roman didactic poetry
Resumo:
In previous work we have found that Cp2TiCl2 and its corresponding deriv. of tamoxifen, Titanocene tamoxifen, show an unexpected proliferative effect on hormone dependent breast cancer cells MCF-7. In order to check if this behavior is a general trend for titanocene derivs. we have tested two other titanocene derivs., Titanocene Y and Titanocene K, on this cell line. Interestingly, these two titanocene complexes behave in a totally different manner. Titanocene K is highly proliferative on MCF-7 cells even at low concns. (0.5 .mu.M), thus behave almost similarly to Cp2TiCl2. This proliferative effect is also obsd. in the presence of bovine serum albumin (BSA). In contrast, Titanocene Y alone has almost no effect on MCF-7 at a concn. of 10 .mu.M, but exhibits a significant dose dependent cytotoxic effect of up to 50% when incubated with BSA (20-50 .mu.g/mL). This confirms the crucial role played by the binding to serum proteins in the expression of the in vivo, cytotoxicity of the titanocene complexes. From the hydridolithiation reaction of 6-p-anisylfulvene with LiBEt3H followed by transmetallation with iron dichloride [bis-[(p-methoxy-benzyl)cyclopentadienyl]iron(II)] (Ferrocene Y) was synthesized. This complex, which was characterized by single crystal X-ray diffraction, contains the robust ferrocenyl unit instead of Ti assocd. with easily leaving groups such as chlorine and shows only a modest cytotoxicity against MCF-7 or MDA-MB-231 cells.
Resumo:
A review. 6-Substituted fulvenes are interesting and easily accessible starting materials for the synthesis of novel substituted titanocenes via reductive dimerization, carbolithiation or hydridolithiation reactions, which are followed by a transmetallation reaction with titanium tetrachloride in the latter two cases. Depending on the substitution pattern, these titanocenes prove to be bioorganometallic anticancer drugs, which have significant potential against advanced or metastatic renal-cell cancer. Patients bearing these stages of kidney cancer have a poor prognosis so far and therefore real progress in the area of metal-based anticancer drugs may come from this simple and effective synthetic approach. This tutorial review provides an insight into the synthesis of fulvene-derived titanocenes and their activity in preclin. expts.
Resumo:
Every winter, the high-latitude oceans are struck by severe storms that are considerably smaller than the weather-dominating synoptic depressions1. Accompanied by strong winds and heavy precipitation, these often explosively developing mesoscale cyclones—termed polar lows1—constitute a threat to offshore activities such as shipping or oil and gas exploitation. Yet owing to their small scale, polar lows are poorly represented in the observational and global reanalysis data2 often used for climatological investigations of atmospheric features and cannot be assessed in coarse-resolution global simulations of possible future climates. Here we show that in a future anthropogenically warmed climate, the frequency of polar lows is projected to decline. We used a series of regional climate model simulations to downscale a set of global climate change scenarios3 from the Intergovernmental Panel of Climate Change. In this process, we first simulated the formation of polar low systems in the North Atlantic and then counted the individual cases. A previous study4 using NCEP/NCAR re-analysis data5 revealed that polar low frequency from 1948 to 2005 did not systematically change. Now, in projections for the end of the twenty-first century, we found a significantly lower number of polar lows and a northward shift of their mean genesis region in response to elevated atmospheric greenhouse gas concentration. This change can be related to changes in the North Atlantic sea surface temperature and mid-troposphere temperature; the latter is found to rise faster than the former so that the resulting stability is increased, hindering the formation or intensification of polar lows. Our results provide a rare example of a climate change effect in which a type of extreme weather is likely to decrease, rather than increase.
Resumo:
Sugars and free amino acids were measured in three potato varieties widely available in the United Kingdom. French fries were cooked for 6, 9 and 12 min at 180°C, and the effects of cooking time and variety on volatile composition were examined. Maillard reaction-derived aroma compounds increased as cooking time increased. Varieties Desiree and Maris Piper were relatively high in sugars and aroma compounds derived from sugars, e.g. 5-methylfurfural and dihydro-2-methyl- 3[2H]-furanone, whereas variety King Edward was relatively high in free amino acids and their associated aroma compounds, such as pyrazines and Strecker aldehydes.
Resumo:
The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA.
Resumo:
Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting thatmost effectors represent species-specific adaptations.
Resumo:
We have examined the atmospheric water cycle of both Polar Regions, pole wards of 60°N and 60°S, using the ERA-Interim re-analysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario, representative of the last three decades of the 21st century. The annual precipitation in ERA-Interim amounts to ~17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is some 8000 km3 but some 3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20 and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22% respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius-Clapeyron relation. There is 2 a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4-6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact the transport is calculated from instantaneous 6-hourly data while precipitation and evaporation is accumulated over a 6 hour period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.