40 resultados para Matrix fractional order differential equation

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An incidence matrix analysis is used to model a three-dimensional network consisting of resistive and capacitive elements distributed across several interconnected layers. A systematic methodology for deriving a descriptor representation of the network with random allocation of the resistors and capacitors is proposed. Using a transformation of the descriptor representation into standard state-space form, amplitude and phase admittance responses of three-dimensional random RC networks are obtained. Such networks display an emergent behavior with a characteristic Jonscher-like response over a wide range of frequencies. A model approximation study of these networks is performed to infer the admittance response using integral and fractional order models. It was found that a fractional order model with only seven parameters can accurately describe the responses of networks composed of more than 70 nodes and 200 branches with 100 resistors and 100 capacitors. The proposed analysis can be used to model charge migration in amorphous materials, which may be associated to specific macroscopic or microscopic scale fractal geometrical structures in composites displaying a viscoelastic electromechanical response, as well as to model the collective responses of processes governed by random events described using statistical mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This brief proposes a new method for the identification of fractional order transfer functions based on the time response resulting from a single step excitation. The proposed method is applied to the identification of a three-dimensional RC network, which can be tailored in terms of topology and composition to emulate real time systems governed by fractional order dynamics. The results are in excellent agreement with the actual network response, yet the identification procedure only requires a small number of coefficients to be determined, demonstrating that the fractional order modelling approach leads to very parsimonious model formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method is developed for approximating the scattering of linear surface gravity waves on water of varying quiescent depth in two dimensions. A conformal mapping of the fluid domain onto a uniform rectangular strip transforms steep and discontinuous bed profiles into relatively slowly varying, smooth functions in the transformed free-surface condition. By analogy with the mild-slope approach used extensively in unmapped domains, an approximate solution of the transformed problem is sought in the form of a modulated propagating wave which is determined by solving a second-order ordinary differential equation. This can be achieved numerically, but an analytic solution in the form of a rapidly convergent infinite series is also derived and provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude and slow variations in the bedform that are excluded from the mapping procedure are incorporated in the approximation by a straightforward extension of the theory. The error incurred in using the method is established by means of a rigorous numerical investigation and it is found that remarkably accurate estimates of the scattered wave amplitudes are given for a wide range of bedforms and frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a characterisation of the spectral properties of linear differential operators with constant coefficients, acting on functions defined on a bounded interval, and determined by general linear boundary conditions. The boundary conditions may be such that the resulting operator is not selfadjoint. We associate the spectral properties of such an operator $S$ with the properties of the solution of a corresponding boundary value problem for the partial differential equation $\partial_t q \pm iSq=0$. Namely, we are able to establish an explicit correspondence between the properties of the family of eigenfunctions of the operator, and in particular whether this family is a basis, and the existence and properties of the unique solution of the associated boundary value problem. When such a unique solution exists, we consider its representation as a complex contour integral that is obtained using a transform method recently proposed by Fokas and one of the authors. The analyticity properties of the integrand in this representation are crucial for studying the spectral theory of the associated operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two recent works have adapted the Kalman–Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance. We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables. Finally, the performance of our ensemble transform Kalman–Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present and analyse a space–time discontinuous Galerkin method for wave propagation problems. The special feature of the scheme is that it is a Trefftz method, namely that trial and test functions are solution of the partial differential equation to be discretised in each element of the (space–time) mesh. The method considered is a modification of the discontinuous Galerkin schemes of Kretzschmar et al. (2014) and of Monk & Richter (2005). For Maxwell’s equations in one space dimension, we prove stability of the method, quasi-optimality, best approximation estimates for polynomial Trefftz spaces and (fully explicit) error bounds with high order in the meshwidth and in the polynomial degree. The analysis framework also applies to scalar wave problems and Maxwell’s equations in higher space dimensions. Some numerical experiments demonstrate the theoretical results proved and the faster convergence compared to the non-Trefftz version of the scheme.