36 resultados para Mathematics, Babylonian
em CentAUR: Central Archive University of Reading - UK
Resumo:
One of the main tasks of the mathematical knowledge management community must surely be to enhance access to mathematics on digital systems. In this paper we present a spectrum of approaches to solving the various problems inherent in this task, arguing that a variety of approaches is both necessary and useful. The main ideas presented are about the differences between digitised mathematics, digitally represented mathematics and formalised mathematics. Each has its part to play in managing mathematical information in a connected world. Digitised material is that which is embodied in a computer file, accessible and displayable locally or globally. Represented material is digital material in which there is some structure (usually syntactic in nature) which maps to the mathematics contained in the digitised information. Formalised material is that in which both the syntax and semantics of the represented material, is automatically accessible. Given the range of mathematical information to which access is desired, and the limited resources available for managing that information, we must ensure that these resources are applied to digitise, form representations of or formalise, existing and new mathematical information in such a way as to extract the most benefit from the least expenditure of resources. We also analyse some of the various social and legal issues which surround the practical tasks.
Resumo:
Interdisciplinary research presents particular challenges for unambiguous communication. Frequently, the meanings of words differ markedly between disciplines, leading to apparent consensus masking fundamental misunderstandings. Researchers can agree on the need for models, but conceive of models fundamentally differently. While mathematics is frequently seen as an elitist language reinforcing disciplinary distinctions, both mathematics and modelling can also offer scope to bridge disciplinary epistemological divisions and create common ground on which very different disciplines can meet. This paper reflects on the role and scope for mathematics and modelling to present a common epistemological space in interdisciplinary research spanning the social, natural and engineering sciences.
Resumo:
This article engages with the claims of Anne Brubaker that “[n]ow that the dust has settled after the so-called ‘Science Wars’ […] it is an opportune time to reassess the ways in which poststructural theory both argues persuasively for mathematics as a culturally embedded practice – a method as opposed to a metaphysics – and, at the same time, reinscribes realist notions of mathematics as a noise-free description of a mind independent reality.” Through a close re-reading of Jacques Derrida’s work I argue, in alliance with Vicki Kirby’s critique of the work of Brian Rotman, not only that Brubaker misunderstands Derrida’s “writing” but also that her argument constitutes a typical instance of much wider misreadings of Derrida and “poststructuralism” across a range of disciplines in terms of the ways in which her text re-institutes the very stabilities it itself attributes to Derrida’s texts.