37 resultados para Mass Transfer Coefficients
em CentAUR: Central Archive University of Reading - UK
Resumo:
The flow patterns generated by a pulsating jet used to study hydrodynamic modulated voltammetry (HMV) are investigated. It is shown that the pronounced edge effect reported previously is the result of the generation of a vortex ring from the pulsating jet. This vortex behaviour of the pulsating jet system is imaged using a number of visualisation techniques. These include a dye system and an electrochemically generated bubble stream. In each case a toroidal vortex ring was observed. Image analysis revealed that the velocity of this motion was of the order of 250 mm s−1 with a corresponding Reynolds number of the order of 1200. This motion, in conjunction with the electrode structure, is used to explain the strong ‘ring and halo’ features detected by electrochemical mapping of the system reported previously.
Resumo:
A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness
Resumo:
The African Easterly Jet-Easterly Wave (AEJ-AEW) system was explored in an idealised model. Prescribed zonally symmetric surface temperature and moisture profiles determine the AEJ which becomes established through meridional contrasts in dry and moist convection.As in previous studies, a realistic AEJ developed with only dry convection. Including moist processes, increased its development rate, but reduced its speed and meridional extent. AEWs grew through barotropic-baroclinic conversions. Negative meridional potential vorticity (PV) gradients arose in the zonally symmetric state through the intrusion of the low-PV Saharan boundary layer. Since moist processes strengthened this significantly through diabatically generated PV in the Intertropical Convergence Zone, moist AEWs were three times stronger. Larger barotropic conversions and faster AEJ development increased the moist wave growth-rate. Jet-level and northerly low-level amplitudes grew, but in the moist case the low-level amplitudes weakened as the AEW interacted with convection, consistent with their absence from observations during the peak monsoon. Striking dependencies between the AEJ, AEW and rainfall existed. Two time-scales governed their evolution, depending on the transfer coefficients: (1) the AEJ's replenishment rate influenced by heat fluxes, and (2) the wave growth-rate, by damping, and the slower jet development rate.Moist AEWs were characterized by intermittent growth/decay, with growth preceded by increased mean rainfall and later, weakening AEJs. These dependencies established an internal 8-10-day variability, consistent with intra-seasonal observations of 9-day rainy sequences. This internal variability offers an alternative explanation to the previously proposed external forcing and a new view of the moist AEW life cycle. Copyright © 2009 Royal Meteorological Society
Resumo:
The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.
Resumo:
Examination of conditional instability of the second kind (CISK) and wind-induced surface heat exchange (WISHE), two proposed mechanisms for tropical cyclone and polar low intensification, suggests that the sensitivity of the intensification rate of these disturbances to surface properties, such as surface friction and moisture supply, will be different for the two mechanisms. These sensitivities were examined by perturbing the surface characteristics in a numerical model with explicit convection. The intensification rate was found to have a strong positive dependence on the heat and moisture transfer coefficients, while remaining largely insensitive to the frictional drag coefficient. CISK does not predict the observed dependence of vortex intensification rate on the heat and moisture transfer coefficients, nor the insensitivity to the frictional drag coefficient since it anticipates that intensification rate is controlled by frictional convergence in the boundary layer. Since neither conditional instability nor boundary moisture content showed any significant sensitivity to the transfer coefficients, this is true of CISK using both the convective closures of Ooyama and of Charney and Eliassen. In comparison, the WISHE intensification mechanism does predict the observed increase in intensification rate with heat and moisture transfer coefficients, while not anticipating a direct influence from surface friction.
Resumo:
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 mu m diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1) (or k(mt) > 1.0 cm s(-1)) are observed at 50 mu m diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 mu m diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 mu m diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.
Resumo:
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)63–/4– redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 µm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of kmt > 0.01 m s–1(or kmt > 1.0 cm s–1) are observed at 50 µm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 µm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 µm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.
Resumo:
A new system for the generation of hydrodynamic modulated voltammetry (HMV) is presented. This system consists of an oscillating jet produced through the mechanical vibration of a large diaphragm. The structure of the cell is such that a relatively small vibration is transferred to a large fluid flow at the jet outlet. Positioning of an electrode (Pt, 0.5 mm or 25 mu m diameter) over the exit of this jet enables the detection of the modulated flow of liquid. While this flow creates modest mass transfer rates (time averaged similar to 0.015 cm s(-1)) it can also be used to create a HMV system where a 'lock-in' approach is adopted to investigate the redox chemistry in question. This is demonstrated for the Fe(CN)(6)(3-/4-) redox system. Here 'lock-in' to the modulated hydrodynamic signal is achieved through the deployment of bespoke software. The apparatus and procedure is shown to produce a simple and efficient way to obtain the desired signal. In addition the spatial variation of the HMV signal, phase correction and time averaged current with respect to the jet orifice is presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Phenolic compounds in wastewaters are difficult to treat using the conventional biological techniques such as activated sludge processes because of their bio-toxic and recalcitrant properties and the high volumes released from various chemical, pharmaceutical and other industries. In the current work, a modified heterogeneous advanced Fenton process (AFP) is presented as a novel methodology for the treatment of phenolic wastewater. The modified AFP, which is a combination of hydrodynamic cavitation generated using a liquid whistle reactor and the AFP is a promising technology for wastewaters containing high organic content. The presence of hydrodynamic cavitation in the treatment scheme intensifies the Fenton process by generation of additional free radicals. Also, the turbulence produced during the hydrodynamic cavitation process increases the mass transfer rates as well as providing better contact between the pseudo-catalyst surfaces and the reactants. A multivariate design of experiments has been used to ascertain the influence of hydrogen peroxide dosage and iron catalyst loadings on the oxidation performance of the modified AFP. High er TOC removal rates were achieved with increased concentrations of hydrogen peroxide. In contrast, the effect of catalyst loadings was less important on the TOC removal rate under conditions used in this work although there is an optimum value of this parameter. The concentration of iron species in the reaction solution was measured at 105 min and its relationship with the catalyst loadings and hydrogen peroxide level is presented.
Resumo:
The aim of this review paper is to present experimental methodologies and the mathematical approaches used to determine effective diffusivities of solutes in food materials. The paper commences by describing the diffusion phenomena related to solute mass transfer in foods and effective diffusivities. It then focuses on the mathematical formulation for the calculation of effective diffusivities considering different diffusion models based on Fick's second law of diffusion. Finally, experimental considerations for effective diffusivity determination are elucidated primarily based on the acquirement of a series of solute content versus time curves appropriate to the equation model chosen. Different factors contributing to the determination of the effective diffusivities such as the structure of food material, temperature, diffusion solvent, agitation, sampling, concentration and different techniques used are considered. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The electrochemistry of Pt nanostructured electrodes is investigated using hydrodynamic modulated voltammetry (HMV). Here a liquid crystal templating process is used to produce platinum-modified electrodes with a range of surface areas (roughness factor 42.4-280.8). The electroreduction of molecular oxygen at these nanostructured platinum surfaces is used to demonstrate the ability of HMV to discriminate between faradaic and nonfaradaic electrode reactions. The HMV approach shows that the reduction of molecular oxygen experiences considerable signal loss within the high pseudocapacitive region of the voltammetry. Evidence for the contribution of the double layer to transient mass transfer events is presented. In addition, a model circuit and appropriate theoretical analysis are used to illustrate the transient responses of a time variant faradaic component. This in conjunction with the experimental evidence shows that, far from being a passive component in this system, the double layer can contribute to HMV faradaic reactions under certain conditions.
Resumo:
The causes of pathological conditions such as Alzheimer’s and Parkinson’s diseases are becoming better understood. Proteins that misfold from their native structure to form aggregates of β-sheet fibrils — termed amyloid — are known1,2 to be implicated in these ‘amyloid diseases’. Understanding the early steps of fibril formation is critical, and the conditions, mechanism and kinetics of protein and peptide aggregation are being widely investigated through a variety of in vitro studies. Kinetic aspects of the dispersion of the protein or peptide in solution are thought to influence the fibrillization process by mass-transfer effects. In addition, mixing also leads to shear forces, which can influence fibril growth by perturbing the equilibrium between the isolated and aggregated proteins, causing existing fibrils to fragment and create new nuclei3. Writing in the Journal of the American Chemical Society, David Talaga and co-workers have now highlighted4 an additional factor that can influence the fibrillization of amyloid-forming proteins — the presence of hydrophobic interfaces.
Resumo:
In membrane distillation in a conventional membrane module, the enthalpies of vaporisation and condensation are supplied and removed by changes in the temperatures of the feed and permeate streams, respectively. Less than 5% of the feed can be distilled in a single pass, because the potential changes in the enthalpies of the liquid streams are much smaller than the enthalpy of vaporisation. Furthermore, the driving force for mass transfer reduces as the feed stream temperature and vapour pressure fall during distillation. These restrictions can be avoided if the enthalpy of vaporisation is uncoupled from the heat capacities of the feed and permeate streams. A specified distillation can then be effected continuously in a single module. Calculations are presented which estimate the performance of a flat plate unit in which the enthalpy of distillation is supplied and removed by the condensing and boiling of thermal fluids in separate circuits, and the imposed temperature difference is independent of position. Because the mass flux through the membrane is dependent on vapour pressure, membrane distillation is suited to applications with a high membrane temperature. The maximum mass flux in the proposed module geometry is predicted to be 30 kg/m2 per h at atmospheric pressure when the membrane temperature is 65°C. Operation at higher membrane temperatures is predicted to raise the mass flux, for example to 85 kg/m2 per h at a membrane temperature of 100°C. This would require pressurisation to 20 bar to prevent boiling at the heating plate of the feed channel. Pre-pressurisation of the membrane pores and control of the dissolved gas concentrations in the feed and the recyled permeate should be investigated as a means to achieve high temperature membrane distillation without pore penetration and wetting.
Resumo:
This review looks at the work carried out over the past 15 years on membrane distillation and reports the conditions utilized for research. The process is still used mainly at the laboratory scale, but a few pilot plants have been built across the world, mostly for desalination and the production of potable water. Studies into membrane distillation have been concerned with the effect of mass transfer, heat transfer, and stirring rate, but the most important effect that has to be considered with this process is temperature polarization. A section on temperature polarization and the effect of boundary layers is included in this review.
Resumo:
This review looks at the work carried out over the past 15 years on membrane distillation and reports the conditions utilized for research. The process is still used mainly at the laboratory scale, but a few pilot plants have been built across the world, mostly for desalination and the production of potable water. Studies into membrane distillation have been concerned with the effect of mass transfer, heat transfer, and stirring rate, but the most important effect that has to be considered with this process is temperature polarization. A section on temperature polarization and the effect of boundary layers is included in this review.