10 resultados para Martian Meteorite Alh84001

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution describes the optimization of chlorine extraction from silicate samples by pyrohydrolysis prior to the precise determination of Cl stable-isotope compositions (637 Cl) by gas source, dual inlet Isotope Ratio Mass Spectrometry (IRMS) on CH(3)Clg. The complete method was checked on three international reference materials for Cl-content and two laboratory glass standards. Whole procedure blanks are lower than 0. 5 mu mol, corresponding to less than 10 wt.% of most of the sample chloride analysed. In the absence of international chlorine isotope rock, we report here Cl extracted compared to accepted Cl contents and reproducibilities on Cl and delta Cl-37 measurements for the standard rocks. After extraction, the Cl contents of the three international references compared within error with the accepted values (mean yield = 94 +/-10%) with reproducibilities better than 12% (10). The laboratory glass standards - andesite SO100DS92 and phonolite S9(2) - were used specifically to test the effect of chloride amount on the measurements. They gave Cl extraction yields of 100 +/-6% (1 sigma-; n = 15) and 105 +/- 8% (1 sigma-; n = 7), respectively, with delta Cl-37 values of -0.51 0.14%o and -0.39 0.17%o (1g). In summary, for silicate samples with Cl contents between 39 and 9042 ppm, the Pyrohydrolysis/HPLC method leads to overall CI extraction yields of 100 8%, reproducibilities on Cl contents of 7% and on delta Cl-37 measurements of 0.12%o (all 1 sigma). The method was further applied to ten silicate rocks of various mineralogy and chemistry (meteorite, fresh MORB glasses, altered basalts and setpentinized peridotites) chosen for their large range of Cl contents (70-2156 ppm) and their geological significance. delta Cl-37 values range between -2.33 and -0.50%o. These strictly negative values contrast with the large range and mainly positive values previously reported for comparable silicate samples and shown here to be affected by analytical problems. Thus we propose a preliminary, revised terrestrial CI cycle, mainly dominated by negative and zero delta Cl-37 values. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory dissolution experiments using the LL6 ordinary chondrite Bensour demonstrate that meteoritic minerals readily react with distilled water at low temperatures, liberating ions into solution and forming reaction products. Three experiments were performed, all for 68 days and at atmospheric fO(2) but using a range of water/rock ratios and different ternperatures. Experiments I and 2 were batch experiments and undertaken at room temperature, whereas in experiment 3, condensed boiling water was dripped onto meteorite subsamples within a Soxhlet extractor. Solutions from experiment 1 were chemically analyzed at the end of the experiment, whereas aliquots were extracted from experiments 2 and 3 for analysis at regular intervals. In all three experiments, a very significant proportion of the Na, Cl, and K within the Bensour subsamples entered solution, demonstrating that chlorapatite and feldspar were especially susceptible to dissolution. Concentrations of Mg, Al, Si, Ca, and Fe in solution were strongly affected by the precipitation of reaction products and Mg and Ca may also have been removed by sorption. Calculations predict saturation of experimental solutions with respect to Al hydroxides, Fe oxides, and Fe (oxy)hydroxides, which would have frequently been accompanied by hydrous aluminosilicates. Some reaction products were identified and include silica, a Mg-rich silicate, Fe oxides, and Fe (oxy)hydroxides. The implications of these results are that even very short periods of subaerial exposure of ordinary chondrites will lead to dissolution of primary minerals and crystallization of weathering products that are likely to include aluminosilicates and silicates, Mg-Ca carbonates, and sulfates in addition to the ubiquitous Fe oxides and (oxy)hydroxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis of a low dimensional martian climate attractor is investigated by the application of the proper orthogonal decomposition (POD) to a simulation of martian atmospheric circulation using the UK Mars general circulation model (UK-MGCM). In this article we focus on a time series of the interval between autumn and winter in the northern hemisphere, when baroclinic activity is intense. The POD is a statistical technique that allows the attribution of total energy (TE) to particular structures embedded in the UK-MGCM time-evolving circulation. These structures are called empirical orthogonal functions (EOFs). Ordering the EOFs according to their associated energy content, we were able to determine the necessary number to account for a chosen amount of atmospheric TE. We show that for Mars a large fraction of TE is explained by just a few EOFs (with 90% TE in 23 EOFs), which apparently support the initial hypothesis. We also show that the resulting EOFs represent classical types of atmospheric motion, such as thermal tides and transient waves. Thus, POD is shown to be an efficient method for the identification of different classes of atmospheric modes. It also provides insight into the non-linear interaction of these modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we explore the possibility of deriving low-dimensional models of the dynamics of the Martian atmosphere. The analysis consists of a Proper Orthogonal Decomposition (POD) of the atmospheric streamfunction after first decomposing the vertical structure with a set of eigenmodes. The vertical modes were obtained from the quasi-geostrophic vertical structure equation. The empirical orthogonal functions (EOFs) were optimized to represent the atmospheric total energy. The total energy was used as the criterion to retain those modes with large energy content and discard the rest. The principal components (PCs) were analysed by means of Fourier analysis, so that the dominant frequencies could be identified. It was possible to observe the strong influence of the diurnal cycle and to identify the motion and vacillation of baroclinic waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation of the lifting of dust from the planetary surface is of substantially greater importance on Mars than on Earth, due to the fundamental role that atmospheric dust plays in the former’s climate, yet the dust emission parameterisations used to date in martian global climate models (MGCMs) lag, understandably, behind their terrestrial counterparts in terms of sophistication. Recent developments in estimating surface roughness length over all martian terrains and in modelling atmospheric circulations at regional to local scales (less than O(100 km)) presents an opportunity to formulate an improved wind stress lifting parameterisation. We have upgraded the conventional scheme by including the spatially varying roughness length in the lifting parameterisation in a fully consistent manner (thereby correcting a possible underestimation of the true threshold level for wind stress lifting), and used a modification to account for deviations from neutral stability in the surface layer. Following these improvements, it is found that wind speeds at typical MGCM resolution never reach the lifting threshold at most gridpoints: winds fall particularly short in the southern midlatitudes, where mean roughness is large. Sub-grid scale variability, manifested in both the near-surface wind field and the surface roughness, is then considered, and is found to be a crucial means of bridging the gap between model winds and thresholds. Both forms of small-scale variability contribute to the formation of dust emission ‘hotspots’: areas within the model gridbox with particularly favourable conditions for lifting, namely a smooth surface combined with strong near-surface gusts. Such small-scale emission could in fact be particularly influential on Mars, due both to the intense positive radiative feedbacks that can drive storm growth and a strong hysteresis effect on saltation. By modelling this variability, dust lifting is predicted at the locations at which dust storms are frequently observed, including the flushing storm sources of Chryse and Utopia, and southern midlatitude areas from which larger storms tend to initiate, such as Hellas and Solis Planum. The seasonal cycle of emission, which includes a double-peaked structure in northern autumn and winter, also appears realistic. Significant increases to lifting rates are produced for any sensible choices of parameters controlling the sub-grid distributions used, but results are sensitive to the smallest scale of variability considered, which high-resolution modelling suggests should be O(1 km) or less. Use of such models in future will permit the use of a diagnosed (rather than prescribed) variable gustiness intensity, which should further enhance dust lifting in the southern hemisphere in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The redistribution of a finite amount of martian surface dust during global dust storms and in the intervening periods has been modelled in a dust lifting version of the UK Mars General Circulation Model. When using a constant, uniform threshold in the model’s wind stress lifting parameterisation and assuming an unlimited supply of surface dust, multiannual simulations displayed some variability in dust lifting activity from year to year, arising from internal variability manifested in surface wind stress, but dust storms were limited in size and formed within a relatively short seasonal window. Lifting thresholds were then allowed to vary at each model gridpoint, dependent on the rates of emission or deposition of dust. This enhanced interannual variability in dust storm magnitude and timing, such that model storms covered most of the observed ranges in size and initiation date within a single multiannual simulation. Peak storm magnitude in a given year was primarily determined by the availability of surface dust at a number of key sites in the southern hemisphere. The observed global dust storm (GDS) frequency of roughly one in every 3 years was approximately reproduced, but the model failed to generate these GDSs spontaneously in the southern hemisphere, where they have typically been observed to initiate. After several years of simulation, the surface threshold field—a proxy for net change in surface dust density—showed good qualitative agreement with the observed pattern of martian surface dust cover. The model produced a net northward cross-equatorial dust mass flux, which necessitated the addition of an artificial threshold decrease rate in order to allow the continued generation of dust storms over the course of a multiannual simulation. At standard model resolution, for the southward mass flux due to cross-equatorial flushing storms to offset the northward flux due to GDSs on a timescale of ∼3 years would require an increase in the former by a factor of 3–4. Results at higher model resolution and uncertainties in dust vertical profiles mean that quasi-periodic redistribution of dust on such a timescale nevertheless appears to be a plausible explanation for the observed GDS frequency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The martian solsticial pause, presented in a companion paper (Lewis et al., this issue), was investigated further through a series of model runs using the UK version of the LMD/UK Mars Global Climate Model. It was found that the pause could not be adequately reproduced if radiatively active water ice clouds were omitted from the model. When clouds were used, along with a realistic time-dependent dust opacity distribution, a substantial minimum in near-surface transient eddy activity formed around solstice in both hemispheres. The net effect of the clouds in the model is, by altering the thermal structure of the atmosphere, to decrease the vertical shear of the westerly jet near the surface around solstice, and thus reduce baroclinic growth rates. A similar effect was seen under conditions of large dust loading, implying that northern midlatitude eddy activity will tend to become suppressed after a period of intense flushing storm formation around the northern cap edge. Suppression of baroclinic eddy generation by the barotropic component of the flow and via diabatic eddy dissipation were also investigated as possible mechanisms leading to the formation of the solsticial pause but were found not to make major contributions. Zonal variations in topography were found to be important, as their presence results in weakened transient eddies around winter solstice in both hemispheres, through modification of the near-surface flow. The zonal topographic asymmetry appears to be the primary reason for the weakness of eddy activity in the southern hemisphere relative to the northern hemisphere, and the ultimate cause of the solsticial pause in both hemispheres. The meridional topographic gradient was found to exert a much weaker influence on near-surface transient eddies.